Sensorless vector control of induction motors in fuel cell vehicle using a neuro-fuzzy speed controller and an online artificial neural network speed estimator

K. Jalili, S. Farhangi, E. Saievar-Iranizad
{"title":"Sensorless vector control of induction motors in fuel cell vehicle using a neuro-fuzzy speed controller and an online artificial neural network speed estimator","authors":"K. Jalili, S. Farhangi, E. Saievar-Iranizad","doi":"10.1109/CCA.2001.973874","DOIUrl":null,"url":null,"abstract":"A sensorless speed control method for induction motors in a fuel cell vehicle is presented. An artificial neural network (ANN) estimates the speed, and a neuro-fuzzy controller (NFC) is used in the speed control loop to overcome the nonlinearity of the plant. A PI controller controls the motor flux and the NFC determines the required torque. The tuning of the NFC is simple and this is one of the advantages of NFCs compared with the conventional PI controllers. In addition, the nonlinear behavior of the NFC increases its robustness against variation of parameters in the plant. The speed estimation is done by a two-layer online neural network in the rotating coordinate fixed with rotor flux. The ANN estimator has a simple structure, and its parameters are adjusted online. The simulation and experimental results are given to prove the effectiveness of this approach.","PeriodicalId":365390,"journal":{"name":"Proceedings of the 2001 IEEE International Conference on Control Applications (CCA'01) (Cat. No.01CH37204)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2001 IEEE International Conference on Control Applications (CCA'01) (Cat. No.01CH37204)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.2001.973874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A sensorless speed control method for induction motors in a fuel cell vehicle is presented. An artificial neural network (ANN) estimates the speed, and a neuro-fuzzy controller (NFC) is used in the speed control loop to overcome the nonlinearity of the plant. A PI controller controls the motor flux and the NFC determines the required torque. The tuning of the NFC is simple and this is one of the advantages of NFCs compared with the conventional PI controllers. In addition, the nonlinear behavior of the NFC increases its robustness against variation of parameters in the plant. The speed estimation is done by a two-layer online neural network in the rotating coordinate fixed with rotor flux. The ANN estimator has a simple structure, and its parameters are adjusted online. The simulation and experimental results are given to prove the effectiveness of this approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经模糊速度控制器和在线人工神经网络速度估计器的燃料电池汽车感应电机无传感器矢量控制
提出了一种燃料电池汽车感应电机无传感器速度控制方法。采用人工神经网络(ANN)对速度进行估计,并在速度控制回路中采用神经模糊控制器(NFC)来克服被控对象的非线性。PI控制器控制电机磁链,NFC确定所需的转矩。NFC的调整简单,这是NFC与传统PI控制器相比的优势之一。此外,NFC的非线性行为增加了其对对象参数变化的鲁棒性。在转子磁链固定的旋转坐标系中,采用两层在线神经网络进行转速估计。该神经网络估计器结构简单,参数可在线调整。仿真和实验结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pay-load estimation of a 2DOF flexible link robot using a delta-operator technique A mechatronics library for SIMULINK An adaptive sliding observer for sensorless control of synchronous motors Position and orientation estimation based on Kalman filtering of stereo images Quasi-unknown input observers for linear systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1