Realtime Congestion Forecasting of Remote Space Through BLE Beacons

Taiki Iwao, S. Fujita
{"title":"Realtime Congestion Forecasting of Remote Space Through BLE Beacons","authors":"Taiki Iwao, S. Fujita","doi":"10.1109/CANDARW51189.2020.00018","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a system which forecasts the degree of congestions in a given space without actually visiting there. The proposed system is based on an assumption such that the arrival and departure of users concerned with the target space follows a specific probability distribution such as Gaussian mixture distribution and Poisson distribution. The system estimates parameters of the underlying probability distribution from time-series data reflecting the movement of users, and forecasts the degree of congestions at a certain time in the near future by using estimated parameters. The experimental results based on actual data acquired in a classroom of university show that the accuracy of parameter estimation could be comparable to that for complete data by filling missing future part with dummy data generated according to an appropriate normal distribution.","PeriodicalId":127873,"journal":{"name":"International Symposium on Computing and Networking - Across Practical Development and Theoretical Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Computing and Networking - Across Practical Development and Theoretical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CANDARW51189.2020.00018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a system which forecasts the degree of congestions in a given space without actually visiting there. The proposed system is based on an assumption such that the arrival and departure of users concerned with the target space follows a specific probability distribution such as Gaussian mixture distribution and Poisson distribution. The system estimates parameters of the underlying probability distribution from time-series data reflecting the movement of users, and forecasts the degree of congestions at a certain time in the near future by using estimated parameters. The experimental results based on actual data acquired in a classroom of university show that the accuracy of parameter estimation could be comparable to that for complete data by filling missing future part with dummy data generated according to an appropriate normal distribution.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于BLE信标的远程空间实时拥塞预测
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Message from the Organizers: CANDAR 2022 A Density-Based Congestion Avoidance Protocol for Strict Beaconing Requirements in VANETs Realtime Congestion Forecasting of Remote Space Through BLE Beacons
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1