A forward pulse-width modulated quasi-resonant converter: analysis, design and experimental results

I. Barbi, J. B. Vieira, J.C. Bolacell
{"title":"A forward pulse-width modulated quasi-resonant converter: analysis, design and experimental results","authors":"I. Barbi, J. B. Vieira, J.C. Bolacell","doi":"10.1109/IECON.1989.69606","DOIUrl":null,"url":null,"abstract":"The authors propose a forward pulse-width modulated zero-current switching quasi-resonant converter (F-PWM-ZCS-QRC), which, in contrast to the conventional forward frequency-modulated zero-current switching quasi-resonant converter (F-FM-ZCS-QRC), provides output voltage and power control at a constant operating frequency. The topology is generated by inserting an additional current-bidirectional switch in the conventional F-FM-ZCS-QRC. The operation principle and design-oriented analysis are presented, with normalized design curves, design procedure, numerical examples, simulations, and experimental results. Theoretical analysis was verified experimentally with a prototype rated at 100 W, operating at the resonant frequency of 1.56 MHz and a switching frequency of 500 kHz. It has been experimentally demonstrated that the proposed converter operates from full load down to 2% of full load, with a constant switching frequency of 500 kHz.<<ETX>>","PeriodicalId":384081,"journal":{"name":"15th Annual Conference of IEEE Industrial Electronics Society","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"15th Annual Conference of IEEE Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON.1989.69606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

The authors propose a forward pulse-width modulated zero-current switching quasi-resonant converter (F-PWM-ZCS-QRC), which, in contrast to the conventional forward frequency-modulated zero-current switching quasi-resonant converter (F-FM-ZCS-QRC), provides output voltage and power control at a constant operating frequency. The topology is generated by inserting an additional current-bidirectional switch in the conventional F-FM-ZCS-QRC. The operation principle and design-oriented analysis are presented, with normalized design curves, design procedure, numerical examples, simulations, and experimental results. Theoretical analysis was verified experimentally with a prototype rated at 100 W, operating at the resonant frequency of 1.56 MHz and a switching frequency of 500 kHz. It has been experimentally demonstrated that the proposed converter operates from full load down to 2% of full load, with a constant switching frequency of 500 kHz.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种正向脉宽调制准谐振变换器:分析、设计与实验结果
本文提出了一种正向脉宽调制零电流开关准谐振变换器(F-PWM-ZCS-QRC),与传统的正向调频零电流开关准谐振变换器(F-FM-ZCS-QRC)相比,该变换器在恒定的工作频率下提供输出电压和功率控制。该拓扑是通过在传统的F-FM-ZCS-QRC中插入一个额外的电流双向开关产生的。介绍了其工作原理和面向设计的分析,并给出了归一化设计曲线、设计步骤、数值算例、仿真和实验结果。用额定功率为100 W、谐振频率为1.56 MHz、开关频率为500 kHz的样机验证了理论分析。实验证明,该变换器工作在满载至满载2%的范围内,开关频率恒定为500khz。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Digital controller algorithm incorporating pseudo-acceleration feedback Advanced motion control in robotics A microprocessor-based suboptimal speed controller for an SCR-DC motor drive Design and implementation of an interactive digital controller development system Finite element analysis and computer-aided optimal design of the magnetic field of fluxgate magnetometers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1