D. Ishikawa, H. Nakako, Yuki Kawana, Chie Sugama, Motohiro Negishi, Y. Ejiri, Suguru Ueda, B. An, H. Wurst, B. Leyrer, T. Blank, Marc Weber
{"title":"Copper Die-Bonding Sinter Paste: Sintering and Bonding Properties","authors":"D. Ishikawa, H. Nakako, Yuki Kawana, Chie Sugama, Motohiro Negishi, Y. Ejiri, Suguru Ueda, B. An, H. Wurst, B. Leyrer, T. Blank, Marc Weber","doi":"10.1109/ESTC.2018.8546455","DOIUrl":null,"url":null,"abstract":"this paper describes the sintering properties and bonding properties of copper (Cu) die-bonding sinter paste for power devices operating at high temperatures. The Cu paste can be sintered pressure less in 100% H2 or under pressure in 100% N2 atmospheres. The as-sintered density, thermal conductivity and resistivity of pressure less-sintered Cu (in 100% H2, 300 °C, 1 h) is found to be 7S%, 180 Wm^-1K^-1 and 4.3 $\\mu\\Omega\\cdot cm$, respectively. The pressurelesssintered Cu has higher 0.2% proof stress than the pressure-sintered Ag (sintered density =87%, in air, 300 °C 10 MPa, 10min) as a comparison material in a three-point bending test. The die-shear strength of appropriate pressurelesssintered Cu on four different metal adherends (Cu, Ni, Ag and Au) was 30 MPa or higher. The die-shear strength of pressure- sintered Cu in 100% N2 was 36 MPa or higher. A thermal cycle tolerance of 1000 cycles or greater was shown in a power device test package which was bonded using the pressurelesssintered Cu and encapsulated with an epoxy molding compound. The Cu sinter paste can be used as a reliable die-bonding material for power modules operating at high temperatures.","PeriodicalId":198238,"journal":{"name":"2018 7th Electronic System-Integration Technology Conference (ESTC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th Electronic System-Integration Technology Conference (ESTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESTC.2018.8546455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
this paper describes the sintering properties and bonding properties of copper (Cu) die-bonding sinter paste for power devices operating at high temperatures. The Cu paste can be sintered pressure less in 100% H2 or under pressure in 100% N2 atmospheres. The as-sintered density, thermal conductivity and resistivity of pressure less-sintered Cu (in 100% H2, 300 °C, 1 h) is found to be 7S%, 180 Wm^-1K^-1 and 4.3 $\mu\Omega\cdot cm$, respectively. The pressurelesssintered Cu has higher 0.2% proof stress than the pressure-sintered Ag (sintered density =87%, in air, 300 °C 10 MPa, 10min) as a comparison material in a three-point bending test. The die-shear strength of appropriate pressurelesssintered Cu on four different metal adherends (Cu, Ni, Ag and Au) was 30 MPa or higher. The die-shear strength of pressure- sintered Cu in 100% N2 was 36 MPa or higher. A thermal cycle tolerance of 1000 cycles or greater was shown in a power device test package which was bonded using the pressurelesssintered Cu and encapsulated with an epoxy molding compound. The Cu sinter paste can be used as a reliable die-bonding material for power modules operating at high temperatures.
本文介绍了高温功率器件用铜(Cu)模压烧结浆料的烧结性能和键合性能。铜膏体的烧结压力在100℃以下% H2 or under pressure in 100% N2 atmospheres. The as-sintered density, thermal conductivity and resistivity of pressure less-sintered Cu (in 100% H2, 300 °C, 1 h) is found to be 7S%, 180 Wm^-1K^-1 and 4.3 $\mu\Omega\cdot cm$, respectively. The pressurelesssintered Cu has higher 0.2% proof stress than the pressure-sintered Ag (sintered density =87%, in air, 300 °C 10 MPa, 10min) as a comparison material in a three-point bending test. The die-shear strength of appropriate pressurelesssintered Cu on four different metal adherends (Cu, Ni, Ag and Au) was 30 MPa or higher. The die-shear strength of pressure- sintered Cu in 100% N2 was 36 MPa or higher. A thermal cycle tolerance of 1000 cycles or greater was shown in a power device test package which was bonded using the pressurelesssintered Cu and encapsulated with an epoxy molding compound. The Cu sinter paste can be used as a reliable die-bonding material for power modules operating at high temperatures.