Copper Die-Bonding Sinter Paste: Sintering and Bonding Properties

D. Ishikawa, H. Nakako, Yuki Kawana, Chie Sugama, Motohiro Negishi, Y. Ejiri, Suguru Ueda, B. An, H. Wurst, B. Leyrer, T. Blank, Marc Weber
{"title":"Copper Die-Bonding Sinter Paste: Sintering and Bonding Properties","authors":"D. Ishikawa, H. Nakako, Yuki Kawana, Chie Sugama, Motohiro Negishi, Y. Ejiri, Suguru Ueda, B. An, H. Wurst, B. Leyrer, T. Blank, Marc Weber","doi":"10.1109/ESTC.2018.8546455","DOIUrl":null,"url":null,"abstract":"this paper describes the sintering properties and bonding properties of copper (Cu) die-bonding sinter paste for power devices operating at high temperatures. The Cu paste can be sintered pressure less in 100% H2 or under pressure in 100% N2 atmospheres. The as-sintered density, thermal conductivity and resistivity of pressure less-sintered Cu (in 100% H2, 300 °C, 1 h) is found to be 7S%, 180 Wm^-1K^-1 and 4.3 $\\mu\\Omega\\cdot cm$, respectively. The pressurelesssintered Cu has higher 0.2% proof stress than the pressure-sintered Ag (sintered density =87%, in air, 300 °C 10 MPa, 10min) as a comparison material in a three-point bending test. The die-shear strength of appropriate pressurelesssintered Cu on four different metal adherends (Cu, Ni, Ag and Au) was 30 MPa or higher. The die-shear strength of pressure- sintered Cu in 100% N2 was 36 MPa or higher. A thermal cycle tolerance of 1000 cycles or greater was shown in a power device test package which was bonded using the pressurelesssintered Cu and encapsulated with an epoxy molding compound. The Cu sinter paste can be used as a reliable die-bonding material for power modules operating at high temperatures.","PeriodicalId":198238,"journal":{"name":"2018 7th Electronic System-Integration Technology Conference (ESTC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th Electronic System-Integration Technology Conference (ESTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESTC.2018.8546455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

this paper describes the sintering properties and bonding properties of copper (Cu) die-bonding sinter paste for power devices operating at high temperatures. The Cu paste can be sintered pressure less in 100% H2 or under pressure in 100% N2 atmospheres. The as-sintered density, thermal conductivity and resistivity of pressure less-sintered Cu (in 100% H2, 300 °C, 1 h) is found to be 7S%, 180 Wm^-1K^-1 and 4.3 $\mu\Omega\cdot cm$, respectively. The pressurelesssintered Cu has higher 0.2% proof stress than the pressure-sintered Ag (sintered density =87%, in air, 300 °C 10 MPa, 10min) as a comparison material in a three-point bending test. The die-shear strength of appropriate pressurelesssintered Cu on four different metal adherends (Cu, Ni, Ag and Au) was 30 MPa or higher. The die-shear strength of pressure- sintered Cu in 100% N2 was 36 MPa or higher. A thermal cycle tolerance of 1000 cycles or greater was shown in a power device test package which was bonded using the pressurelesssintered Cu and encapsulated with an epoxy molding compound. The Cu sinter paste can be used as a reliable die-bonding material for power modules operating at high temperatures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铜模压烧结浆料:烧结和粘合性能
本文介绍了高温功率器件用铜(Cu)模压烧结浆料的烧结性能和键合性能。铜膏体的烧结压力在100℃以下% H2 or under pressure in 100% N2 atmospheres. The as-sintered density, thermal conductivity and resistivity of pressure less-sintered Cu (in 100% H2, 300 °C, 1 h) is found to be 7S%, 180 Wm^-1K^-1 and 4.3 $\mu\Omega\cdot cm$, respectively. The pressurelesssintered Cu has higher 0.2% proof stress than the pressure-sintered Ag (sintered density =87%, in air, 300 °C 10 MPa, 10min) as a comparison material in a three-point bending test. The die-shear strength of appropriate pressurelesssintered Cu on four different metal adherends (Cu, Ni, Ag and Au) was 30 MPa or higher. The die-shear strength of pressure- sintered Cu in 100% N2 was 36 MPa or higher. A thermal cycle tolerance of 1000 cycles or greater was shown in a power device test package which was bonded using the pressurelesssintered Cu and encapsulated with an epoxy molding compound. The Cu sinter paste can be used as a reliable die-bonding material for power modules operating at high temperatures.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wafer Level Through Polymer Optical Vias (TPOV) Enabling High Throughput of Optical Windows Manufacturing ESTC 2018 TOC Calculation of local solder temperature profiles in reflow ovens Numerical and statistical investigation of weld formation in a novel two-dimensional copper-copper bonding process Nonconchoidal Fracture in Power Electronics Substrates due to Delamination in Baseplate Solder Joints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1