Data Access Performance in a Large and Dynamic Pharmaceutical Drug Candidate Database

Zina Ben-Miled, Yang Liu, D. Powers, O. Bukhres, Michael Bem, Robert Jones, Robert J. Oppelt, Sam A. Milosevich
{"title":"Data Access Performance in a Large and Dynamic Pharmaceutical Drug Candidate Database","authors":"Zina Ben-Miled, Yang Liu, D. Powers, O. Bukhres, Michael Bem, Robert Jones, Robert J. Oppelt, Sam A. Milosevich","doi":"10.1109/SC.2000.10049","DOIUrl":null,"url":null,"abstract":"An explosion in the amount of data generated through chemical and biological experimentation has been observed in recent years. This rapid proliferation of vast amounts of data has led to a set of cheminformatics and bioinformatics applications that manipulate dynamic, heterogeneous, and massive data. An example of such applications in the pharmaceutical industry is the computational process involved in the early discovery of lead drug candidates for a given target disease. This computational process includes repeated sequential and random accesses to a drug candidate database. Using the above pharmaceutical application, an experimental study was conducted in this paper that shows that for optimal performance, the degree of parallelism exploited in the application should be adjusted according to the drug candidate database instance size and the machine size. Additionally, different degrees of parallelism should be used depending on whether the access to the drug candidate database is random or sequential.","PeriodicalId":228250,"journal":{"name":"ACM/IEEE SC 2000 Conference (SC'00)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM/IEEE SC 2000 Conference (SC'00)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC.2000.10049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

An explosion in the amount of data generated through chemical and biological experimentation has been observed in recent years. This rapid proliferation of vast amounts of data has led to a set of cheminformatics and bioinformatics applications that manipulate dynamic, heterogeneous, and massive data. An example of such applications in the pharmaceutical industry is the computational process involved in the early discovery of lead drug candidates for a given target disease. This computational process includes repeated sequential and random accesses to a drug candidate database. Using the above pharmaceutical application, an experimental study was conducted in this paper that shows that for optimal performance, the degree of parallelism exploited in the application should be adjusted according to the drug candidate database instance size and the machine size. Additionally, different degrees of parallelism should be used depending on whether the access to the drug candidate database is random or sequential.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大型动态候选药物数据库中的数据访问性能
近年来,通过化学和生物实验产生的数据量呈爆炸式增长。大量数据的快速扩散导致了一系列化学信息学和生物信息学应用程序,这些应用程序可以操纵动态、异构和大量数据。这种应用在制药工业中的一个例子是涉及到针对特定目标疾病的先导候选药物的早期发现的计算过程。该计算过程包括对候选药物数据库的重复顺序和随机访问。本文针对上述制药应用程序进行了实验研究,结果表明,为了获得最佳性能,应用程序中利用的并行度应根据候选药物数据库实例大小和机器大小进行调整。此外,根据对候选药物数据库的访问是随机的还是顺序的,应该使用不同程度的并行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Object-Oriented Job Execution Environment Automatically Tuned Collective Communications Architectural and Performance Evaluation of GigaNet and Myrinet Interconnects on Clusters of Small-Scale SMP Servers Parallel Smoothed Aggregation Multigrid : Aggregation Strategies on Massively Parallel Machines High-Cost CFD on a Low-Cost Cluster
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1