Investigate Transitions into Drug Addiction through Text Mining of Reddit Data

John Lu, S. Sridhar, Ritika Pandey, M. Hasan, G. Mohler
{"title":"Investigate Transitions into Drug Addiction through Text Mining of Reddit Data","authors":"John Lu, S. Sridhar, Ritika Pandey, M. Hasan, G. Mohler","doi":"10.1145/3292500.3330737","DOIUrl":null,"url":null,"abstract":"Increasing rates of opioid drug abuse and heightened prevalence of online support communities underscore the necessity of employing data mining techniques to better understand drug addiction using these rapidly developing online resources. In this work, we obtained data from Reddit, an online collection of forums, to gather insight into drug use/misuse using text snippets from users narratives. Specifically, using users' posts, we trained a binary classifier which predicts a user's transitions from casual drug discussion forums to drug recovery forums. We also proposed a Cox regression model that outputs likelihoods of such transitions. In doing so, we found that utterances of select drugs and certain linguistic features contained in one's posts can help predict these transitions. Using unfiltered drug-related posts, our research delineates drugs that are associated with higher rates of transitions from recreational drug discussion to support/recovery discussion, offers insight into modern drug culture, and provides tools with potential applications in combating the opioid crisis.","PeriodicalId":186134,"journal":{"name":"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3292500.3330737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

Increasing rates of opioid drug abuse and heightened prevalence of online support communities underscore the necessity of employing data mining techniques to better understand drug addiction using these rapidly developing online resources. In this work, we obtained data from Reddit, an online collection of forums, to gather insight into drug use/misuse using text snippets from users narratives. Specifically, using users' posts, we trained a binary classifier which predicts a user's transitions from casual drug discussion forums to drug recovery forums. We also proposed a Cox regression model that outputs likelihoods of such transitions. In doing so, we found that utterances of select drugs and certain linguistic features contained in one's posts can help predict these transitions. Using unfiltered drug-related posts, our research delineates drugs that are associated with higher rates of transitions from recreational drug discussion to support/recovery discussion, offers insight into modern drug culture, and provides tools with potential applications in combating the opioid crisis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过对Reddit数据的文本挖掘来研究药物成瘾的转变
阿片类药物滥用率不断上升,在线支持社区日益普及,这突出表明有必要利用这些迅速发展的在线资源,采用数据挖掘技术更好地了解吸毒情况。在这项工作中,我们从Reddit(一个在线论坛集合)获取数据,通过用户叙述的文本片段来收集对药物使用/滥用的见解。具体来说,使用用户的帖子,我们训练了一个二元分类器,该分类器可以预测用户从随意的药物讨论论坛到药物恢复论坛的过渡。我们还提出了一个Cox回归模型,输出这种转变的可能性。在这样做的过程中,我们发现选择药物的话语和某些语言特征包含在一个人的帖子中可以帮助预测这些转变。通过使用未经过滤的药物相关帖子,我们的研究描绘了与从娱乐性药物讨论到支持/恢复讨论的较高比率相关的药物,提供了对现代毒品文化的洞察,并提供了在对抗阿片类药物危机方面具有潜在应用的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tackle Balancing Constraint for Incremental Semi-Supervised Support Vector Learning HATS Temporal Probabilistic Profiles for Sepsis Prediction in the ICU Large-scale User Visits Understanding and Forecasting with Deep Spatial-Temporal Tensor Factorization Framework Adaptive Influence Maximization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1