Work-in-Progress: Preference-Oriented Scheduling in Multiprocessor Real-Time Systems

Qin Xia, Dakai Zhu, Hakan Aydin
{"title":"Work-in-Progress: Preference-Oriented Scheduling in Multiprocessor Real-Time Systems","authors":"Qin Xia, Dakai Zhu, Hakan Aydin","doi":"10.1109/RTSS.2018.00023","DOIUrl":null,"url":null,"abstract":"For a set of real-time tasks that have mixed preference of being executed at early or late times before their deadlines, we have recently studied both earliest-deadline based and fixed-priority preference-oriented (PO) scheduling algorithms for uniprocessor systems. In this work, focusing on multiprocessor real-time systems, we study the foundational guidelines to design partition-based PO scheduling algorithms for tasks with mixed preference requirements. In particular, through a concrete example, we illustrate that the harmonicity of tasks' periods should be incorporated when making scheduling decisions in addition to their execution preferences to obtain favorable schedules that better fulfill tasks' preference requirements. Based on such guidelines, we design a period-aware preference-oriented (PAPO) partitioned scheduling algorithm and discuss several variations by considering harmonicity as well as utilization of tasks.","PeriodicalId":294784,"journal":{"name":"2018 IEEE Real-Time Systems Symposium (RTSS)","volume":"2012 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Real-Time Systems Symposium (RTSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTSS.2018.00023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

For a set of real-time tasks that have mixed preference of being executed at early or late times before their deadlines, we have recently studied both earliest-deadline based and fixed-priority preference-oriented (PO) scheduling algorithms for uniprocessor systems. In this work, focusing on multiprocessor real-time systems, we study the foundational guidelines to design partition-based PO scheduling algorithms for tasks with mixed preference requirements. In particular, through a concrete example, we illustrate that the harmonicity of tasks' periods should be incorporated when making scheduling decisions in addition to their execution preferences to obtain favorable schedules that better fulfill tasks' preference requirements. Based on such guidelines, we design a period-aware preference-oriented (PAPO) partitioned scheduling algorithm and discuss several variations by considering harmonicity as well as utilization of tasks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在制品:多处理器实时系统中面向偏好的调度
对于一组在截止日期之前执行的混合优先级的实时任务,我们最近研究了单处理器系统中基于最早截止日期的调度算法和固定优先级面向优先级(PO)的调度算法。本文以多处理器实时系统为研究对象,研究了基于分区的PO调度算法设计的基本准则。特别地,通过一个具体的例子,我们说明在进行调度决策时,除了考虑任务的执行偏好外,还应考虑任务周期的一致性,以获得更好地满足任务偏好要求的有利调度。在此基础上,我们设计了一种周期感知的面向偏好(PAPO)分区调度算法,并考虑了协调性和任务利用率,讨论了几种不同的调度算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
NoCo: ILP-Based Worst-Case Contention Estimation for Mesh Real-Time Manycores Distributed Real-Time Shortest-Paths Computations with the Field Calculus Dynamic Channel Selection for Real-Time Safety Message Communication in Vehicular Networks An Efficient Knapsack-Based Approach for Calculating the Worst-Case Demand of AVR Tasks Schedulability Analysis of Adaptive Variable-Rate Tasks with Dynamic Switching Speeds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1