{"title":"Performance optimization in signal processing systems","authors":"A. Misra, B. Abbott, J. Sztipanovits","doi":"10.1109/SSST.1990.138223","DOIUrl":null,"url":null,"abstract":"Techniques for optimizing the utilization of underlying computer resources with respect to a dynamic signal-processing system executing on them are discussed. An example system is used to illustrate these techniques: a structurally adaptive solution to the sonar problem, the direction-of-arrival finding problem, was implemented under the Multigraph architecture. The signal processing system runs in a distributed, parallel environment, the Multigraph execution environment. Above the executing real-time signal-processing system, a controller guides and coordinates overall goals (e.g. tracking). It also manages the available system resources, taking into account the memory and time requirements of the signal-processing algorithms and their priorities. Further, a user interface allows priorities and various operating parameters of the system to be changed dynamically.<<ETX>>","PeriodicalId":201543,"journal":{"name":"[1990] Proceedings. The Twenty-Second Southeastern Symposium on System Theory","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1990] Proceedings. The Twenty-Second Southeastern Symposium on System Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSST.1990.138223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Techniques for optimizing the utilization of underlying computer resources with respect to a dynamic signal-processing system executing on them are discussed. An example system is used to illustrate these techniques: a structurally adaptive solution to the sonar problem, the direction-of-arrival finding problem, was implemented under the Multigraph architecture. The signal processing system runs in a distributed, parallel environment, the Multigraph execution environment. Above the executing real-time signal-processing system, a controller guides and coordinates overall goals (e.g. tracking). It also manages the available system resources, taking into account the memory and time requirements of the signal-processing algorithms and their priorities. Further, a user interface allows priorities and various operating parameters of the system to be changed dynamically.<>