SIPS: Solar Irradiance Prediction System

S. Achleitner, Ankur Kamthe, Tao Liu, Alberto Cerpa
{"title":"SIPS: Solar Irradiance Prediction System","authors":"S. Achleitner, Ankur Kamthe, Tao Liu, Alberto Cerpa","doi":"10.1109/IPSN.2014.6846755","DOIUrl":null,"url":null,"abstract":"There is high interest in up-scaling capacities of renewable energy sources such as wind and solar. However, variability and uncertainty in power output is a major concern and forecasting is, therefore, a top priority. Advancements in forecasting can potentially limit the impact of fluctuations in solar power generation, specifically in cloudy days when the variability and dynamics are the largest. We propose SIPS, Solar Irradiance Prediction System, a novel sensing infrastructure using wireless sensor networks (WSNs) to enable sensing of solar irradiance for solar power generation forecasting. In this paper, we report the findings of a deployment of a hierarchical WSN system consisting of 19 TelosB nodes equipped with solar irradiance sensors, and 5 MicaZ nodes equipped with GPS boards, deployed in the vicinity of a 1 MW solar array. We evaluate different irradiance sensor types and the performance of different novel prediction methods using SIPS' data and show that the spatial-temporal cross-correlations between sensor node readings and solar array output power exists and can be exploited to improve prediction accuracy. Using this data for short-term solar forecasting for cloudy days with very high dynamics in solar output power generation - the worst case scenario for prediction-, we get an average of 97.24% accuracy in our prediction for short time horizon forecasting and 240% reduction of predicted normalized root mean square error (NRMSE) compared to state-of-the-art methods that do not use SIPS data.","PeriodicalId":297218,"journal":{"name":"IPSN-14 Proceedings of the 13th International Symposium on Information Processing in Sensor Networks","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IPSN-14 Proceedings of the 13th International Symposium on Information Processing in Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPSN.2014.6846755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

Abstract

There is high interest in up-scaling capacities of renewable energy sources such as wind and solar. However, variability and uncertainty in power output is a major concern and forecasting is, therefore, a top priority. Advancements in forecasting can potentially limit the impact of fluctuations in solar power generation, specifically in cloudy days when the variability and dynamics are the largest. We propose SIPS, Solar Irradiance Prediction System, a novel sensing infrastructure using wireless sensor networks (WSNs) to enable sensing of solar irradiance for solar power generation forecasting. In this paper, we report the findings of a deployment of a hierarchical WSN system consisting of 19 TelosB nodes equipped with solar irradiance sensors, and 5 MicaZ nodes equipped with GPS boards, deployed in the vicinity of a 1 MW solar array. We evaluate different irradiance sensor types and the performance of different novel prediction methods using SIPS' data and show that the spatial-temporal cross-correlations between sensor node readings and solar array output power exists and can be exploited to improve prediction accuracy. Using this data for short-term solar forecasting for cloudy days with very high dynamics in solar output power generation - the worst case scenario for prediction-, we get an average of 97.24% accuracy in our prediction for short time horizon forecasting and 240% reduction of predicted normalized root mean square error (NRMSE) compared to state-of-the-art methods that do not use SIPS data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
太阳辐照度预测系统
人们对扩大风能和太阳能等可再生能源的产能非常感兴趣。然而,功率输出的可变性和不确定性是一个主要问题,因此预测是重中之重。预报方面的进步可能会限制太阳能发电波动的影响,特别是在多云天气,因为多云天气的变化和动态最大。我们提出了SIPS,太阳辐照度预测系统,这是一种使用无线传感器网络(WSNs)的新型传感基础设施,可以感知太阳辐照度以预测太阳能发电。在本文中,我们报告了一种分层WSN系统的部署结果,该系统由19个配备太阳辐照度传感器的TelosB节点和5个配备GPS板的MicaZ节点组成,部署在1 MW太阳能阵列附近。我们利用SIPS的数据评估了不同类型的辐照度传感器和不同新型预测方法的性能,并表明传感器节点读数与太阳能电池阵列输出功率之间存在时空互相关性,可以用来提高预测精度。利用这些数据对太阳能发电动态非常高的阴天进行短期太阳能预测(预测的最坏情况),与不使用SIPS数据的最先进方法相比,我们的短期预测平均准确率为97.24%,预测归一化均方根误差(NRMSE)降低了240%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal sensor placement and measurement of wind for water quality studies in urban reservoirs One meter to find them all-water network leak localization using a single flow meter Demonstration abstract: Simply RIOT — Teaching and experimental research in the Internet of Things Demonstration abstract: Submetering by synthesizing side-channel sensor streams Visual light landmarks for mobile devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1