Wan Du, Zikun Xing, Mo Li, Bingsheng He, L. Chua, Haiyan Miao
{"title":"Optimal sensor placement and measurement of wind for water quality studies in urban reservoirs","authors":"Wan Du, Zikun Xing, Mo Li, Bingsheng He, L. Chua, Haiyan Miao","doi":"10.1145/2700265","DOIUrl":null,"url":null,"abstract":"We collaborate with environmental scientists to study the hydrodynamics and water quality in an urban district, where the surface wind distribution is an essential input but undergoes high spatial and temporal variations due to the complex urban landform created by surrounding buildings. In this work, we study an optimal sensor placement scheme to measure the wind distribution over a large urban reservoir with a limited number of wind sensors. Unlike existing sensor placement solutions that assume Gaussian process of target phenomena, this study measures the wind which inherently exhibits strong non-Gaussian yearly distribution. By leveraging the local monsoon characteristics of wind, we segment a year into different monsoon seasons which follow a unique distribution respectively. We also use computational fluid dynamics to learn the spatial correlation of wind in the presence of surrounding buildings. The output of sensor placement is a set of the most informative locations to deploy the wind sensors, based on the readings of which we can accurately predict the wind over the entire reservoir surface in real time. 10 wind sensors are finally deployed around or on the water surface of an urban reservoir. The in-field measurement results of more than 3 months suggest that the proposed sensor placement and spatial prediction approach provides accurate wind measurement which outperforms the state-of-the-art Gaussian model based or interpolation based approaches.","PeriodicalId":297218,"journal":{"name":"IPSN-14 Proceedings of the 13th International Symposium on Information Processing in Sensor Networks","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"69","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IPSN-14 Proceedings of the 13th International Symposium on Information Processing in Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2700265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 69
Abstract
We collaborate with environmental scientists to study the hydrodynamics and water quality in an urban district, where the surface wind distribution is an essential input but undergoes high spatial and temporal variations due to the complex urban landform created by surrounding buildings. In this work, we study an optimal sensor placement scheme to measure the wind distribution over a large urban reservoir with a limited number of wind sensors. Unlike existing sensor placement solutions that assume Gaussian process of target phenomena, this study measures the wind which inherently exhibits strong non-Gaussian yearly distribution. By leveraging the local monsoon characteristics of wind, we segment a year into different monsoon seasons which follow a unique distribution respectively. We also use computational fluid dynamics to learn the spatial correlation of wind in the presence of surrounding buildings. The output of sensor placement is a set of the most informative locations to deploy the wind sensors, based on the readings of which we can accurately predict the wind over the entire reservoir surface in real time. 10 wind sensors are finally deployed around or on the water surface of an urban reservoir. The in-field measurement results of more than 3 months suggest that the proposed sensor placement and spatial prediction approach provides accurate wind measurement which outperforms the state-of-the-art Gaussian model based or interpolation based approaches.