Sentiment Analysis of Short Informal Text by Tuning BERT - Bi-LSTM Model

Shreyas Agrawal, Sumanto Dutta, Bidyut Kr. Patra
{"title":"Sentiment Analysis of Short Informal Text by Tuning BERT - Bi-LSTM Model","authors":"Shreyas Agrawal, Sumanto Dutta, Bidyut Kr. Patra","doi":"10.1109/EUROCON52738.2021.9535535","DOIUrl":null,"url":null,"abstract":"Sentiment analysis is one of the significant tasks in processing natural language by a machine. However, it is difficult for a machine to understand the feelings of a person and opinion about a topic. Many approaches have been introduced for analyzing sentiment from long text in recent past. In contrast, these approaches fail to address the small length text problem like Twitter data efficiently. Recent advances in the pre-trained contextualized embeddings like Bidirectional Encoder Representations from Transformers (BERT) show far greater accuracy than traditional embeddings. In this paper, we develop a novel architecture to tune the BERT using a Bidirectional Long Short-Term Memory (Bi-LSTM) model. A task-specific layer is incorporated along with the BERT in the proposed model. Our model extracts sentiment from short texts, especially Twitter data. The extensive experiments show the superiority of our model over state-of-the-art models in sentiment analysis task across several gold standard datasets.","PeriodicalId":328338,"journal":{"name":"IEEE EUROCON 2021 - 19th International Conference on Smart Technologies","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE EUROCON 2021 - 19th International Conference on Smart Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROCON52738.2021.9535535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Sentiment analysis is one of the significant tasks in processing natural language by a machine. However, it is difficult for a machine to understand the feelings of a person and opinion about a topic. Many approaches have been introduced for analyzing sentiment from long text in recent past. In contrast, these approaches fail to address the small length text problem like Twitter data efficiently. Recent advances in the pre-trained contextualized embeddings like Bidirectional Encoder Representations from Transformers (BERT) show far greater accuracy than traditional embeddings. In this paper, we develop a novel architecture to tune the BERT using a Bidirectional Long Short-Term Memory (Bi-LSTM) model. A task-specific layer is incorporated along with the BERT in the proposed model. Our model extracts sentiment from short texts, especially Twitter data. The extensive experiments show the superiority of our model over state-of-the-art models in sentiment analysis task across several gold standard datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于BERT - Bi-LSTM模型的非正式短文本情感分析
情感分析是机器处理自然语言的重要任务之一。然而,机器很难理解一个人的感受和对一个话题的看法。近年来,人们提出了许多方法来分析长文本的情感。相比之下,这些方法不能有效地解决像Twitter数据这样的小长度文本问题。最近在预训练情境化嵌入方面的进展,如变形金刚的双向编码器表示(BERT),显示出比传统嵌入更高的准确性。在本文中,我们开发了一种使用双向长短期记忆(Bi-LSTM)模型来调整BERT的新架构。在提议的模型中,与BERT一起合并了一个特定于任务的层。我们的模型从短文本中提取情感,尤其是Twitter数据。广泛的实验表明,我们的模型在多个金标准数据集的情感分析任务中优于最先进的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of Exact and Approximating Dependences of the Active Resistance of Conductor on the Frequency of Current Under the Action of Skin Effect Efficient Pre-BPF based Sigma Delta Radio over Fiber System for 5G NR Fronthauls An Object-Oriented Verification Technique of FPGA-based Adjustment Systems for Video Graphics Accelerators Estimation of Mechanical Parameters and Tidal Current Velocity for a Tidal Turbine Test Driven Development in Action: Case Study of a Cross-Platform Web Application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1