Inbodied Interaction 102: Exploring Neuro-Physio Pathways for Self-Tuning

M. Schraefel, Josh Andrés, Aaron Tabor
{"title":"Inbodied Interaction 102: Exploring Neuro-Physio Pathways for Self-Tuning","authors":"M. Schraefel, Josh Andrés, Aaron Tabor","doi":"10.1145/3411763.3445010","DOIUrl":null,"url":null,"abstract":"In Inbodied Interaction 101, we considered the Physiology and Anatomy of the body via three associated interactions that reflect an inbodied state: 1. inbodied adaptation in response to the in5 and C4 over Time and Context in order to maintain 2. homeostasis via 3. metabolism. We called this adaptation process “tuning.” In 102 we build on this foundation to consider the physiology tuning. In particular we will look at a series of inbodied interactions: the neuro-endocrine system interaction with the organ systems that cue adaptive responses from genetic signals to fat metabolism; the autonomic nervous system and the limbic system's interactions that affect volitional/non-volitional interaction. We will introduce the components of the brainstem, basal nuclei and cerebellum that support interoception around self-Tuning. Within this framing, we will look at the strengths and limits of non-invasive measures of these processes (eg, HRV, EEG, blood oxygen saturation, qualitative responses). Outcomes will familiarity with how we function as inbodied complex systems, with worked examples of how the physiology of tuning can be translated into interactive designs to support health, wellbeing, performance in new ways.","PeriodicalId":265192,"journal":{"name":"Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3411763.3445010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In Inbodied Interaction 101, we considered the Physiology and Anatomy of the body via three associated interactions that reflect an inbodied state: 1. inbodied adaptation in response to the in5 and C4 over Time and Context in order to maintain 2. homeostasis via 3. metabolism. We called this adaptation process “tuning.” In 102 we build on this foundation to consider the physiology tuning. In particular we will look at a series of inbodied interactions: the neuro-endocrine system interaction with the organ systems that cue adaptive responses from genetic signals to fat metabolism; the autonomic nervous system and the limbic system's interactions that affect volitional/non-volitional interaction. We will introduce the components of the brainstem, basal nuclei and cerebellum that support interoception around self-Tuning. Within this framing, we will look at the strengths and limits of non-invasive measures of these processes (eg, HRV, EEG, blood oxygen saturation, qualitative responses). Outcomes will familiarity with how we function as inbodied complex systems, with worked examples of how the physiology of tuning can be translated into interactive designs to support health, wellbeing, performance in new ways.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
内在互动102:探索自我调谐的神经物理途径
在《内在互动101》中,我们通过三种反映内在状态的相关互动来考虑身体的生理和解剖学:随着时间和环境的变化,对in5和C4的体内适应,以维持2。体内平衡通过3。新陈代谢。我们把这种适应过程称为“调整”。在102中,我们在此基础上考虑生理调谐。我们将特别关注一系列体内相互作用:神经内分泌系统与器官系统的相互作用,这些器官系统提示从遗传信号到脂肪代谢的适应性反应;自主神经系统和边缘系统的相互作用影响意志/非意志的相互作用。我们将介绍脑干、基底核和小脑中支持自我调谐的内感受的组成部分。在此框架内,我们将研究这些过程的非侵入性测量的优势和局限性(例如,心率波动、脑电图、血氧饱和度、定性反应)。结果将熟悉我们如何作为一个内在的复杂系统运作,以及如何将生理调节转化为互动设计的工作实例,以新的方式支持健康、幸福和表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Office Agents: Personal Office Vitality Sensors with Intent What Can CHI Do About Dark Patterns? Towards the Next Generation of Extended Reality Wearables TactiHelm: Tactile Feedback in a Cycling Helmet for Collision Avoidance Remote Friction Control on 3-dimensional Object Made of Polystyrene Foam Using Airborne Ultrasound Focus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1