Incremental semi-supervised subspace learning for image retrieval

Xiaofei He
{"title":"Incremental semi-supervised subspace learning for image retrieval","authors":"Xiaofei He","doi":"10.1145/1027527.1027530","DOIUrl":null,"url":null,"abstract":"Subspace learning techniques are widespread in pattern recognition research. They include Principal Component Analysis (PCA), Locality Preserving Projection (LPP), etc. These techniques are generally unsupervised which allows them to model data in the absence of labels or categories. In relevance feedback driven image retrieval system, the user provided information can be used to better describe the intrinsic semantic relationships between images. In this paper, we propose a semi-supervised subspace learning algorithm which incrementally learns an adaptive subspace by preserving the semantic structure of the image space, based on user interactions in a relevance feedback driven query-by-example system. Our algorithm is capable of accumulating knowledge from users, which could result in new feature representations for images in the database so that the system's future retrieval performance can be enhanced. Experiments on a large collection of images have shown the effectiveness and efficiency of our proposed algorithm.","PeriodicalId":292207,"journal":{"name":"MULTIMEDIA '04","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"96","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MULTIMEDIA '04","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1027527.1027530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 96

Abstract

Subspace learning techniques are widespread in pattern recognition research. They include Principal Component Analysis (PCA), Locality Preserving Projection (LPP), etc. These techniques are generally unsupervised which allows them to model data in the absence of labels or categories. In relevance feedback driven image retrieval system, the user provided information can be used to better describe the intrinsic semantic relationships between images. In this paper, we propose a semi-supervised subspace learning algorithm which incrementally learns an adaptive subspace by preserving the semantic structure of the image space, based on user interactions in a relevance feedback driven query-by-example system. Our algorithm is capable of accumulating knowledge from users, which could result in new feature representations for images in the database so that the system's future retrieval performance can be enhanced. Experiments on a large collection of images have shown the effectiveness and efficiency of our proposed algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于图像检索的增量半监督子空间学习
子空间学习技术在模式识别研究中有着广泛的应用。它们包括主成分分析(PCA)、局部保持投影(LPP)等。这些技术通常是无监督的,这使得它们可以在没有标签或类别的情况下对数据进行建模。在相关性反馈驱动的图像检索系统中,用户提供的信息可以更好地描述图像之间的内在语义关系。在本文中,我们提出了一种半监督子空间学习算法,该算法通过保留图像空间的语义结构,在相关反馈驱动的按例查询系统中,基于用户交互增量学习自适应子空间。我们的算法能够从用户那里积累知识,这可以为数据库中的图像产生新的特征表示,从而提高系统未来的检索性能。在大量图像上的实验证明了该算法的有效性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Context for semantic metadata Collusion attack on a multi-key secure video proxy scheme PLSA-based image auto-annotation: constraining the latent space The relative effectiveness of concept-based versus content-based video retrieval LEMUR: robotic musical instruments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1