{"title":"60GHz high-gain low-noise amplifiers with a common-gate inductive feedback in 65nm CMOS","authors":"H. Hsieh, Po-Yi Wu, C. Jou, F. Hsueh, G. Huang","doi":"10.1109/RFIC.2011.5940665","DOIUrl":null,"url":null,"abstract":"In this paper, a novel design technique of common-gate inductive feedback is presented for millimeter-wave low-noise amplifiers (LNAs). For this technique, by adopting a gate inductor at the common-gate transistor of the cascode stage, the gain of the LNA can be enhanced even under a wideband operation. Using a 65nm CMOS process, transmission-line-based and spiral-inductor-based LNAs are fabricated for demonstration. With a dc power consumption of 33.6 mW from a 1.2-V supply voltage, the transmission-line-based LNA exhibits a gain of 20.6 dB and a noise figure of 5.4 dB at 60 GHz while the 3dB bandwidth is 14.1 GHz. As for the spiral-inductor-based LNA, consuming a dc power of 28.8 mW from a 1.2-V supply voltage, the circuit shows a gain of 18.0 dB and a noise figure of 4.5 dB at 60 GHz while the 3dB bandwidth is 12.2 GHz.","PeriodicalId":448165,"journal":{"name":"2011 IEEE Radio Frequency Integrated Circuits Symposium","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Radio Frequency Integrated Circuits Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFIC.2011.5940665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47
Abstract
In this paper, a novel design technique of common-gate inductive feedback is presented for millimeter-wave low-noise amplifiers (LNAs). For this technique, by adopting a gate inductor at the common-gate transistor of the cascode stage, the gain of the LNA can be enhanced even under a wideband operation. Using a 65nm CMOS process, transmission-line-based and spiral-inductor-based LNAs are fabricated for demonstration. With a dc power consumption of 33.6 mW from a 1.2-V supply voltage, the transmission-line-based LNA exhibits a gain of 20.6 dB and a noise figure of 5.4 dB at 60 GHz while the 3dB bandwidth is 14.1 GHz. As for the spiral-inductor-based LNA, consuming a dc power of 28.8 mW from a 1.2-V supply voltage, the circuit shows a gain of 18.0 dB and a noise figure of 4.5 dB at 60 GHz while the 3dB bandwidth is 12.2 GHz.