GCoM

Jounghoo Lee, Yeonan Ha, Suhyun Lee, Jinyoung Woo, Jinho Lee, Hanhwi Jang, Youngsok Kim
{"title":"GCoM","authors":"Jounghoo Lee, Yeonan Ha, Suhyun Lee, Jinyoung Woo, Jinho Lee, Hanhwi Jang, Youngsok Kim","doi":"10.1145/3470496.3527384","DOIUrl":null,"url":null,"abstract":"Analytical models can greatly help computer architects perform orders of magnitude faster early-stage design space exploration than using cycle-level simulators. To facilitate rapid design space exploration for graphics processing units (GPUs), prior studies have proposed GPU analytical models which capture first-order stall events causing performance degradation; however, the existing analytical models cannot accurately model modern GPUs due to their outdated and highly abstract GPU core microarchitecture assumptions. Therefore, to accurately evaluate the performance of modern GPUs, we need a new GPU analytical model which accurately captures the stall events incurred by the significant changes in the core microarchitectures of modern GPUs. We propose GCoM, an accurate GPU analytical model which faithfully captures the key core-side stall events of modern GPUs. Through detailed microarchitecture-driven GPU core modeling, GCoM accurately models modern GPUs by revealing the following key core-side stalls overlooked by the existing GPU analytical models. First, GCoM identifies the compute structural stall events caused by the limited per-sub-core functional units. Second, GCoM exposes the memory structural stalls due to the limited banks and shared nature of per-core L1 data caches. Third, GCoM correctly predicts the memory data stalls induced by the sectored L1 data caches which split a cache line into a set of sectors sharing the same tag. Fourth, GCoM captures the idle stalls incurred by the inter- and intra-core load imbalances. Our experiments using an NVIDIA RTX 2060 configuration show that GCoM greatly improves the modeling accuracy by achieving a mean absolute error of 10.0% against Accel-Sim cycle-level simulator, whereas the state-of-the-art GPU analytical model achieves a mean absolute error of 44.9%.","PeriodicalId":337932,"journal":{"name":"Proceedings of the 49th Annual International Symposium on Computer Architecture","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 49th Annual International Symposium on Computer Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3470496.3527384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Analytical models can greatly help computer architects perform orders of magnitude faster early-stage design space exploration than using cycle-level simulators. To facilitate rapid design space exploration for graphics processing units (GPUs), prior studies have proposed GPU analytical models which capture first-order stall events causing performance degradation; however, the existing analytical models cannot accurately model modern GPUs due to their outdated and highly abstract GPU core microarchitecture assumptions. Therefore, to accurately evaluate the performance of modern GPUs, we need a new GPU analytical model which accurately captures the stall events incurred by the significant changes in the core microarchitectures of modern GPUs. We propose GCoM, an accurate GPU analytical model which faithfully captures the key core-side stall events of modern GPUs. Through detailed microarchitecture-driven GPU core modeling, GCoM accurately models modern GPUs by revealing the following key core-side stalls overlooked by the existing GPU analytical models. First, GCoM identifies the compute structural stall events caused by the limited per-sub-core functional units. Second, GCoM exposes the memory structural stalls due to the limited banks and shared nature of per-core L1 data caches. Third, GCoM correctly predicts the memory data stalls induced by the sectored L1 data caches which split a cache line into a set of sectors sharing the same tag. Fourth, GCoM captures the idle stalls incurred by the inter- and intra-core load imbalances. Our experiments using an NVIDIA RTX 2060 configuration show that GCoM greatly improves the modeling accuracy by achieving a mean absolute error of 10.0% against Accel-Sim cycle-level simulator, whereas the state-of-the-art GPU analytical model achieves a mean absolute error of 44.9%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
BioHD: an efficient genome sequence search platform using HyperDimensional memorization MeNDA: a near-memory multi-way merge solution for sparse transposition and dataflows Graphite: optimizing graph neural networks on CPUs through cooperative software-hardware techniques INSPIRE: in-storage private information retrieval via protocol and architecture co-design CraterLake: a hardware accelerator for efficient unbounded computation on encrypted data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1