Imputation methods for missing values: the case of Senegalese meteorological data

Sémou di, E. Deme, A. Deme
{"title":"Imputation methods for missing values: the case of Senegalese meteorological data","authors":"Sémou di, E. Deme, A. Deme","doi":"10.16929/ajas/2022.1245.267","DOIUrl":null,"url":null,"abstract":"nge studies require comprehensive databases to analyze the climate signal, to monitor its evolution, and to predict more accurately future changes. Since complete observations of any continuous process is almost impossible, it is then inevitable to encounter missing information in meteorological databases. The aim of this work is to evaluate the performance of five ($5$) imputation methods: missForest, $k$-nn, ppca, mice and imputeTS. The results show that missForest is the best performing method to handle missing temperature data. In the case of precipitation data, the imputeTS method is the preferred one.","PeriodicalId":332314,"journal":{"name":"African Journal of Applied Statistics","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"African Journal of Applied Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.16929/ajas/2022.1245.267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

nge studies require comprehensive databases to analyze the climate signal, to monitor its evolution, and to predict more accurately future changes. Since complete observations of any continuous process is almost impossible, it is then inevitable to encounter missing information in meteorological databases. The aim of this work is to evaluate the performance of five ($5$) imputation methods: missForest, $k$-nn, ppca, mice and imputeTS. The results show that missForest is the best performing method to handle missing temperature data. In the case of precipitation data, the imputeTS method is the preferred one.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
缺失值的估算方法:以塞内加尔气象资料为例
气候变化研究需要全面的数据库来分析气候信号,监测其演变,并更准确地预测未来的变化。由于对任何连续过程的完整观测几乎是不可能的,因此不可避免地会遇到气象数据库中缺少信息的情况。这项工作的目的是评估五种($5$)imputation方法的性能:missForest, $k$-nn, ppca, mice和imputeTS。结果表明,misforest是处理缺失温度数据的最佳方法。对于降水数据,首选的方法是imputeTS方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gumbel copula mortality dependence modeling Empirical Performance of CART, C5.0 and Random Forest Classification Algorithms for Decision Trees Quality report of infectious disease modeling techniques for point-referenced spatial data: A Systematic review Empirical assessment of the physico-chemical determinants of soil spatial variability in Sub-Saharan Africa A complete computer-based approach for data generation patterning to a pdf in \(\mathbb{R}\) and application to gamma and gig data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1