Palladium-catalyzed carbonylation of activated alkyl halides via radical intermediates

Zhi-Peng Bao and Xiao-Feng Wu
{"title":"Palladium-catalyzed carbonylation of activated alkyl halides via radical intermediates","authors":"Zhi-Peng Bao and Xiao-Feng Wu","doi":"10.1039/D3IM00078H","DOIUrl":null,"url":null,"abstract":"<p>Palladium-catalyzed carbonylation is an efficient approach to prepare carbonyl-containing compounds with high atomic economy in synthetic organic chemistry. However, in comparison with aryl halides, carbonylation of alkyl halides is relatively challenging due to the decreased stability of the palladium intermediates. Carbonylation of activated alkyl halides is even more difficult, as nucleophilic substitution reactions with nucleophiles occur more easily with them. In this article, we summarize and discuss recent achievements in palladium-catalyzed carbonylative reactions of activated alkyl halides. The transformations proceed through radical intermediates which are generated in various manners. Under a relatively high pressure of carbon monoxide, the corresponding aliphatic carboxylic acid derivates were effectively prepared with various nucleophiles as the reaction partners. Besides alcohols, amines and organoboron reagents, four-component reactions in combination with alkenes or alkynes were also developed. Case-by-case reaction mechanisms are discussed as well and a personal outlook has also been provided.</p><p>Keywords: Carbonyl group; Palladium catalysis; Carbonylation; Activated alkyl halides; Radical intermediates.</p>","PeriodicalId":29808,"journal":{"name":"Industrial Chemistry & Materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/im/d3im00078h?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Chemistry & Materials","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/im/d3im00078h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Palladium-catalyzed carbonylation is an efficient approach to prepare carbonyl-containing compounds with high atomic economy in synthetic organic chemistry. However, in comparison with aryl halides, carbonylation of alkyl halides is relatively challenging due to the decreased stability of the palladium intermediates. Carbonylation of activated alkyl halides is even more difficult, as nucleophilic substitution reactions with nucleophiles occur more easily with them. In this article, we summarize and discuss recent achievements in palladium-catalyzed carbonylative reactions of activated alkyl halides. The transformations proceed through radical intermediates which are generated in various manners. Under a relatively high pressure of carbon monoxide, the corresponding aliphatic carboxylic acid derivates were effectively prepared with various nucleophiles as the reaction partners. Besides alcohols, amines and organoboron reagents, four-component reactions in combination with alkenes or alkynes were also developed. Case-by-case reaction mechanisms are discussed as well and a personal outlook has also been provided.

Keywords: Carbonyl group; Palladium catalysis; Carbonylation; Activated alkyl halides; Radical intermediates.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
钯催化活化烷基卤化物通过自由基中间体发生羰基化反应
在合成有机化学中,钯催化羰基化是制备原子经济性高的含羰基化合物的有效方法。然而,与芳基卤化物相比,烷基卤化物的羰基化由于钯中间体的稳定性降低而相对具有挑战性。活化烷基卤的羰基化甚至更加困难,因为它们更容易与亲核物发生亲核取代反应。本文总结并讨论了钯催化活化烷基卤化物羰基化反应的最新成果。这些转化是通过以不同方式生成的自由基中间体进行的。在相对较高的一氧化碳压力下,以各种亲核物为反应伙伴,有效地制备了相应的脂肪族羧酸衍生物。除了醇、胺和有机硼试剂外,还开发了与烯或炔结合的四组分反应。此外,还讨论了逐个案例的反应机理,并提供了个人展望:羰基;钯催化;羰基化;活性烷基卤化物;自由基中间体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Industrial Chemistry & Materials
Industrial Chemistry & Materials chemistry, chemical engineering, functional materials, energy, etc.-
自引率
0.00%
发文量
0
期刊介绍: Industrial Chemistry & Materials (ICM) publishes significant innovative research and major technological breakthroughs in all aspects of industrial chemistry and materials, with a particular focus on the important innovation of low-carbon chemical industry, energy and functional materials. By bringing researchers, engineers, and policymakers into one place, research is inspired, challenges are solved and the applications of science and technology are accelerated. The global editorial and advisory board members are valued experts in the community. With their support, the rigorous editorial practices and dissemination ensures your research is accessible and discoverable on a global scale. Industrial Chemistry & Materials publishes: ● Communications ● Full papers ● Minireviews ● Reviews ● Perspectives ● Comments
期刊最新文献
Membrane-free sequential paired electrosynthesis of 1,4-hydroquinone from phenol over a self-supported electrocatalytic electrode Back cover Toward a low-cost uranium-adsorbing material based on nonwoven fabrics and photografting technology Depolymerization of PET with Ethanol by Homogeneous Iron Catalysts Applied for Exclusive Chemical Recycling of Cloth Waste Introduction to the themed issue on liquid-based materials: novel concepts from fundamentals to applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1