首页 > 最新文献

Industrial Chemistry & Materials最新文献

英文 中文
Scalable manufacturing and reprocessing of vitrimerized flexible polyurethane foam (PUF) based on commercial soy polyols†
Pub Date : 2025-01-11 DOI: 10.1039/D4IM00117F
Wangcheng Liu, Yaqiong Zhang, Peter Chen, Lin Shao, Yiding Cao, Baoming Zhao, Ellen C. Lee, Xiaojiang Wang and Jinwen Zhang

As the polyurethane foam (PUF) market, especially in the automotive sector, continues to grow, the environmental impacts of its petrochemical demands and end-of-life waste have motivated the industry to look for more sustainable solutions. This study explores the preparation of recyclable PUFs using commercially available soy polyols (Cargill's BiOH), aiming to enable improved thermal reprocessability of flexible PUFs via vitrimer chemistry. A series of “soy-PUFs” was produced by partially substituting petrochemical polyether polyols with 25% or 50% soy polyols in a standard reference formulation. Incorporation of soy polyols resulted in an increase in the stiffness of the resulting foams. Employing a modest amount (∼0.5 wt%) of dibutyltin dilaurate (DBTDL) in the formulations facilitated dynamic covalent bond exchanges in the cross-linked network during a mild “foam-to-sheet” reprocessing process (160 °C), converting malleable PUFs into densified sheet materials (PUS) with proper compactness and mechanical performance (e.g., tensile modulus = ∼50 MPa). Soy-PUFs demonstrated a modestly enhanced stress relaxation behavior, suggesting adequate reprocessing ability. DMA results demonstrated the phenomenon of forming an “intermediate” region between the hard and soft domains of PUSs after reprocessing.

Keywords: Polyurethane foam; Soybean oil; Polyols; Vitrimer chemistry; Reprocessing; Recycling.

{"title":"Scalable manufacturing and reprocessing of vitrimerized flexible polyurethane foam (PUF) based on commercial soy polyols†","authors":"Wangcheng Liu, Yaqiong Zhang, Peter Chen, Lin Shao, Yiding Cao, Baoming Zhao, Ellen C. Lee, Xiaojiang Wang and Jinwen Zhang","doi":"10.1039/D4IM00117F","DOIUrl":"https://doi.org/10.1039/D4IM00117F","url":null,"abstract":"<p>As the polyurethane foam (PUF) market, especially in the automotive sector, continues to grow, the environmental impacts of its petrochemical demands and end-of-life waste have motivated the industry to look for more sustainable solutions. This study explores the preparation of recyclable PUFs using commercially available soy polyols (Cargill's BiOH), aiming to enable improved thermal reprocessability of flexible PUFs <em>via</em> vitrimer chemistry. A series of “soy-PUFs” was produced by partially substituting petrochemical polyether polyols with 25% or 50% soy polyols in a standard reference formulation. Incorporation of soy polyols resulted in an increase in the stiffness of the resulting foams. Employing a modest amount (∼0.5 wt%) of dibutyltin dilaurate (DBTDL) in the formulations facilitated dynamic covalent bond exchanges in the cross-linked network during a mild “foam-to-sheet” reprocessing process (160 °C), converting malleable PUFs into densified sheet materials (PUS) with proper compactness and mechanical performance (<em>e.g.</em>, tensile modulus = ∼50 MPa). Soy-PUFs demonstrated a modestly enhanced stress relaxation behavior, suggesting adequate reprocessing ability. DMA results demonstrated the phenomenon of forming an “intermediate” region between the hard and soft domains of PUSs after reprocessing.</p><p>Keywords: Polyurethane foam; Soybean oil; Polyols; Vitrimer chemistry; Reprocessing; Recycling.</p>","PeriodicalId":29808,"journal":{"name":"Industrial Chemistry & Materials","volume":" 2","pages":" 231-245"},"PeriodicalIF":0.0,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/im/d4im00117f?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143667790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling the potential of bismuth-based catalysts for electrochemical CO2 reduction 揭示铋基催化剂在二氧化碳电化学还原中的潜力
Pub Date : 2024-12-04 DOI: 10.1039/D4IM00126E
Negar Sabouhanian, Jacek Lipkowski and Aicheng Chen

Electrochemical CO2 reduction has favorable industrial relevance due to its integrability with renewable energies and controllable product generation. Bismuth-based catalysts have emerged as promising candidates in this regard due to their intriguing electrochemical properties and cost-effectiveness. This review focuses on recent advances in bismuth-based catalysts for the electrochemical reduction of CO2, including synthesis methods and approaches for performance improvements. Insights into product formations using Bi-based catalysts are also presented, where in situ FTIR and Raman spectroscopic studies are highlighted to understand the structural evolution of the catalysts and to decipher the mechanisms of CO2 reduction. Further, recent progress of electrochemical CO2 reduction from an industrial perspective and strategies for further development of the bismuth-based catalysts with high activity, selectivity and stability towards practical applications are discussed.

Keywords: Electrochemical CO2 reduction; Bismuth; Nanomaterials; Electrocatalysts; In situ spectroscopy.

{"title":"Unveiling the potential of bismuth-based catalysts for electrochemical CO2 reduction","authors":"Negar Sabouhanian, Jacek Lipkowski and Aicheng Chen","doi":"10.1039/D4IM00126E","DOIUrl":"https://doi.org/10.1039/D4IM00126E","url":null,"abstract":"<p>Electrochemical CO<small><sub>2</sub></small> reduction has favorable industrial relevance due to its integrability with renewable energies and controllable product generation. Bismuth-based catalysts have emerged as promising candidates in this regard due to their intriguing electrochemical properties and cost-effectiveness. This review focuses on recent advances in bismuth-based catalysts for the electrochemical reduction of CO<small><sub>2</sub></small>, including synthesis methods and approaches for performance improvements. Insights into product formations using Bi-based catalysts are also presented, where <em>in situ</em> FTIR and Raman spectroscopic studies are highlighted to understand the structural evolution of the catalysts and to decipher the mechanisms of CO<small><sub>2</sub></small> reduction. Further, recent progress of electrochemical CO<small><sub>2</sub></small> reduction from an industrial perspective and strategies for further development of the bismuth-based catalysts with high activity, selectivity and stability towards practical applications are discussed.</p><p>Keywords: Electrochemical CO<small><sub>2</sub></small> reduction; Bismuth; Nanomaterials; Electrocatalysts; <em>In situ</em> spectroscopy.</p>","PeriodicalId":29808,"journal":{"name":"Industrial Chemistry & Materials","volume":" 2","pages":" 131-150"},"PeriodicalIF":0.0,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/im/d4im00126e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143667774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Methanol-based thermoelectric conversion device with high power† 甲醇基高功率热电转换装置
Pub Date : 2024-11-22 DOI: 10.1039/D4IM00113C
Touya Aiba, Haruka Yamada and Yutaka Moritomo

A liquid thermoelectric conversion device (LTE) converts environmental heat into electric power via the electrochemical Seebeck coefficient α. The maximum power (Wmax) is expressed as , where ΔT and R′ are the temperature difference between electrodes and device resistance in operation, respectively. Here, we systematically investigated the resistance components of LTEs composed of aqueous, methanol (MeOH) and acetone solutions containing 0.8 M Fe(ClO4)2/Fe(ClO4)3. We found that the charge transfer resistance Rct of the MeOH LTE is the smallest among the three LTEs. We demonstrated that the Wmax of the MeOH LTE is slightly larger than or comparable with that of the corresponding aqueous LTE. We further discussed the effects of the convection of an electrolyte on R′.

Keywords: Liquid thermoelectric conversion; Methanol; Resistivity components; Coated electrode.

{"title":"Methanol-based thermoelectric conversion device with high power†","authors":"Touya Aiba, Haruka Yamada and Yutaka Moritomo","doi":"10.1039/D4IM00113C","DOIUrl":"https://doi.org/10.1039/D4IM00113C","url":null,"abstract":"<p>A liquid thermoelectric conversion device (LTE) converts environmental heat into electric power <em>via</em> the electrochemical Seebeck coefficient <em>α</em>. The maximum power (<em>W</em><small><sub>max</sub></small>) is expressed as <img>, where Δ<em>T</em> and <em>R</em>′ are the temperature difference between electrodes and device resistance in operation, respectively. Here, we systematically investigated the resistance components of LTEs composed of aqueous, methanol (MeOH) and acetone solutions containing 0.8 M Fe(ClO<small><sub>4</sub></small>)<small><sub>2</sub></small>/Fe(ClO<small><sub>4</sub></small>)<small><sub>3</sub></small>. We found that the charge transfer resistance <em>R</em><small><sub>ct</sub></small> of the MeOH LTE is the smallest among the three LTEs. We demonstrated that the <em>W</em><small><sub>max</sub></small> of the MeOH LTE is slightly larger than or comparable with that of the corresponding aqueous LTE. We further discussed the effects of the convection of an electrolyte on <em>R</em>′.</p><p>Keywords: Liquid thermoelectric conversion; Methanol; Resistivity components; Coated electrode.</p>","PeriodicalId":29808,"journal":{"name":"Industrial Chemistry & Materials","volume":" 2","pages":" 223-230"},"PeriodicalIF":0.0,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/im/d4im00113c?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143667789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rational design of a carbon nitride photocatalyst with in-plane electron delocalization for photocatalytic hydrogen evolution†
Pub Date : 2024-11-01 DOI: 10.1039/D4IM00118D
Quanguo Hao, Yuhua Zhu, Yuan Li, Zhenhua Li, Hong Yuan and Shuxin Ouyang

Photocatalytic hydrogen evolution based on the use of carbon nitride (CN) catalyst offers a sustainable route to convert solar energy into hydrogen energy; however, its activity is severely restricted by the sluggish transfer of photogenerated charges. Herein, we report a novel approach involving boron (B) doping-induced π-electron delocalization in CN for efficient hydrogen (H2) evolution. The as-prepared B-doped CN (BCN) catalyst presented an 8.6-fold enhancement in the H2-evolution rate (7924.0 μmol h−1 g−1) under visible-light irradiation compared with pristine CN, which corresponded to an apparent quantum yield (AQY) of 14.5% at 405 nm. Experimental analysis and density functional theory (DFT) calculations demonstrated that B doping induced π-electron delocalization in conjugated CN rings to generate a new intermediate state within the band gap to provide a new transfer path for visible-light utilization, thus achieving the high separation and transfer of photoinduced carriers. This work provides a new approach to adjust the electronic structure of CN-like conjugated polymer semiconductors for efficient catalytic energy conversion.

Keywords: B doping; π-electron delocalization; H2 evolution; Photocatalysis.

{"title":"Rational design of a carbon nitride photocatalyst with in-plane electron delocalization for photocatalytic hydrogen evolution†","authors":"Quanguo Hao, Yuhua Zhu, Yuan Li, Zhenhua Li, Hong Yuan and Shuxin Ouyang","doi":"10.1039/D4IM00118D","DOIUrl":"https://doi.org/10.1039/D4IM00118D","url":null,"abstract":"<p>Photocatalytic hydrogen evolution based on the use of carbon nitride (CN) catalyst offers a sustainable route to convert solar energy into hydrogen energy; however, its activity is severely restricted by the sluggish transfer of photogenerated charges. Herein, we report a novel approach involving boron (B) doping-induced π-electron delocalization in CN for efficient hydrogen (H<small><sub>2</sub></small>) evolution. The as-prepared B-doped CN (BCN) catalyst presented an 8.6-fold enhancement in the H<small><sub>2</sub></small>-evolution rate (7924.0 μmol h<small><sup>−1</sup></small> g<small><sup>−1</sup></small>) under visible-light irradiation compared with pristine CN, which corresponded to an apparent quantum yield (AQY) of 14.5% at 405 nm. Experimental analysis and density functional theory (DFT) calculations demonstrated that B doping induced π-electron delocalization in conjugated CN rings to generate a new intermediate state within the band gap to provide a new transfer path for visible-light utilization, thus achieving the high separation and transfer of photoinduced carriers. This work provides a new approach to adjust the electronic structure of CN-like conjugated polymer semiconductors for efficient catalytic energy conversion.</p><p>Keywords: B doping; π-electron delocalization; H<small><sub>2</sub></small> evolution; Photocatalysis.</p>","PeriodicalId":29808,"journal":{"name":"Industrial Chemistry & Materials","volume":" 2","pages":" 203-212"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/im/d4im00118d?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143667788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strategies for enhancing the processability of UHMWPE†
Pub Date : 2024-10-18 DOI: 10.1039/D4IM00104D
Clement G. Collins Rice, Alexander Evans, Zoë R. Turner, Jirut Wattoom and Dermot O'Hare

Ultra-high molecular weight polyethylene (UHMWPE, Mw > 106 g mol−1) has been prepared using slurry-phase titanium permethylindenyl-phenoxy (PHENI*) catalysts. Four strategies have been investigated for improving the melt processability of UHMWPE, which is the chief limiting factor to the applications of this high-performance polymer. 1) Active site engineering was used to explore the entanglement density in the resulting polymer, with substantially disentangled PE identified through thermal and rheological characterisation. 2) Hydrogen and ZnEt2 were employed as chain transfer agents to modulate the polyethylene molecular weight and distribution (MWD). A sequential reactivity protocol using ZnEt2 was able to produce bimodal UHMWPE with improved processability. 3) MWD tuning was further investigated using multisite catalysts, with the reaction conditions and Ti : Zr ratio able to control MWD to essentially arbitrary shapes. The inclusion of low molecular weight fractions into UHMWPE improves the processability without compromising mechanical characteristics. 4) Polymer-reinforced composite blends of UHMWPE with either HDPE or LDPE as a highly processable matrix were extruded and explored, with polymer miscibility and mechanical properties studied in detail.

Keywords: Ultra-high molecular weight polyethylene; Processability; Molecular weight distribution; Polymer composites; Chain transfer agents.

{"title":"Strategies for enhancing the processability of UHMWPE†","authors":"Clement G. Collins Rice, Alexander Evans, Zoë R. Turner, Jirut Wattoom and Dermot O'Hare","doi":"10.1039/D4IM00104D","DOIUrl":"https://doi.org/10.1039/D4IM00104D","url":null,"abstract":"<p>Ultra-high molecular weight polyethylene (UHMWPE, <em>M</em><small><sub>w</sub></small> &gt; 10<small><sup>6</sup></small> g mol<small><sup>−1</sup></small>) has been prepared using slurry-phase titanium permethylindenyl-phenoxy (PHENI*) catalysts. Four strategies have been investigated for improving the melt processability of UHMWPE, which is the chief limiting factor to the applications of this high-performance polymer. 1) Active site engineering was used to explore the entanglement density in the resulting polymer, with substantially disentangled PE identified through thermal and rheological characterisation. 2) Hydrogen and ZnEt<small><sub>2</sub></small> were employed as chain transfer agents to modulate the polyethylene molecular weight and distribution (MWD). A sequential reactivity protocol using ZnEt<small><sub>2</sub></small> was able to produce bimodal UHMWPE with improved processability. 3) MWD tuning was further investigated using multisite catalysts, with the reaction conditions and Ti : Zr ratio able to control MWD to essentially arbitrary shapes. The inclusion of low molecular weight fractions into UHMWPE improves the processability without compromising mechanical characteristics. 4) Polymer-reinforced composite blends of UHMWPE with either HDPE or LDPE as a highly processable matrix were extruded and explored, with polymer miscibility and mechanical properties studied in detail.</p><p>Keywords: Ultra-high molecular weight polyethylene; Processability; Molecular weight distribution; Polymer composites; Chain transfer agents.</p>","PeriodicalId":29808,"journal":{"name":"Industrial Chemistry & Materials","volume":" 2","pages":" 178-190"},"PeriodicalIF":0.0,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/im/d4im00104d?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143667776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In situ polymerization of fluorinated electrolytes for high-voltage and long-cycling solid-state lithium metal batteries
Pub Date : 2024-09-27 DOI: 10.1039/D4IM00082J
Yunpei Lu, Xinyi Zhang, Yong Wu, Hao Cheng and Yingying Lu

Currently, the practical application of liquid lithium-ion batteries faces challenges in meeting the requirements of high energy density and safety. To address concerns such as electrolyte leakage and flammability, solid polymer electrolytes (SPEs) have emerged as promising alternatives to liquid electrolytes. SPEs, particularly those synthesized via in situ polymerization processes, offer advantages in establishing robust interface contacts and compatibility with existing industrial production lines. However, the electrochemical stability of SPEs remains a hurdle for high-voltage lithium metal batteries (LMBs). To enhance interface uniformity, electrochemical stability, and thermal stability, researchers commonly employ fluorination strategies, thus expanding the potential of SPEs in high-voltage, long-cycling LMBs. Fluorine plays a crucial role in achieving these objectives due to its high electronegativity, polarization, outstanding dielectric properties, strong bond strength, stability, and hydrophobic nature. In this study, we delve into how fluorinated electrolytes improve interface stability between SPEs and electrodes by examining their underlying mechanisms. Besides, we provide an overview of current fluorination strategies and their impact on battery performance. Furthermore, we discuss challenges and issues associated with current in situ polymerized fluorinated SPE routes and propose practical strategies for consideration.

Keywords: Lithium metal batteries; In situ polymerization; Fluorinated polymer electrolytes; High-voltage; Long cycling; Stable interface.

{"title":"In situ polymerization of fluorinated electrolytes for high-voltage and long-cycling solid-state lithium metal batteries","authors":"Yunpei Lu, Xinyi Zhang, Yong Wu, Hao Cheng and Yingying Lu","doi":"10.1039/D4IM00082J","DOIUrl":"https://doi.org/10.1039/D4IM00082J","url":null,"abstract":"<p>Currently, the practical application of liquid lithium-ion batteries faces challenges in meeting the requirements of high energy density and safety. To address concerns such as electrolyte leakage and flammability, solid polymer electrolytes (SPEs) have emerged as promising alternatives to liquid electrolytes. SPEs, particularly those synthesized <em>via in situ</em> polymerization processes, offer advantages in establishing robust interface contacts and compatibility with existing industrial production lines. However, the electrochemical stability of SPEs remains a hurdle for high-voltage lithium metal batteries (LMBs). To enhance interface uniformity, electrochemical stability, and thermal stability, researchers commonly employ fluorination strategies, thus expanding the potential of SPEs in high-voltage, long-cycling LMBs. Fluorine plays a crucial role in achieving these objectives due to its high electronegativity, polarization, outstanding dielectric properties, strong bond strength, stability, and hydrophobic nature. In this study, we delve into how fluorinated electrolytes improve interface stability between SPEs and electrodes by examining their underlying mechanisms. Besides, we provide an overview of current fluorination strategies and their impact on battery performance. Furthermore, we discuss challenges and issues associated with current <em>in situ</em> polymerized fluorinated SPE routes and propose practical strategies for consideration.</p><p>Keywords: Lithium metal batteries; <em>In situ</em> polymerization; Fluorinated polymer electrolytes; High-voltage; Long cycling; Stable interface.</p>","PeriodicalId":29808,"journal":{"name":"Industrial Chemistry & Materials","volume":" 2","pages":" 151-177"},"PeriodicalIF":0.0,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/im/d4im00082j?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143667775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced pollutant photodegradation activity of graphitic carbon nitride on via bismuth oxyhalide graphene hybridization and the mechanism study†
Pub Date : 2024-09-24 DOI: 10.1039/D4IM00105B
Xinghui Liu, Yang Liu, Xiang Guo, Bowen Tao, Xu Ma, Simin Cheng, Ning Tian, Gaihui Liu, Qiao Wu, Viet Q. Bui, Kuldeep K. Saxena, Sankar Ganesh Ramaraj, Jianhui Liu, Fuchun Zhang and Yongfa Zhu

Addressing the degradation of persistent organic pollutants like bisphenol A (BPA) and rhodamine B (RhB) with a photocatalyst that is both cost-effective and environmentally friendly is a notable challenge. This research presents the synthesis of an optimized g-C3N4/Bi4O5Br2 composite featuring a Z-scheme heterojunction structure. The precise band alignment of this composite significantly enhances the separation of photogenerated charges and the production of dominant reactive species. The composite demonstrated exceptional photocatalytic performance, with BPA degradation efficiency nearing 98% and RhB achieving complete degradation within 80 and 35 min under visible light, respectively. These results are approximately 1.3 times greater than the individual performance of CN and BOB, surpassing recent literature benchmarks. Through EPR and free radical capture experiments, the role of h+ and ·O2 as the primary active free radicals in the degradation process have been confirmed. First-principles calculations validated the experimental results, indicating that the Z-type heterojunction is instrumental in generating active species, thus improving degradation efficiency. This study offers a promising strategy for the design of photocatalysts targeting emerging organic pollutants.

Keywords: Photocatalysis; g-C3N4; Bi4O5Br2; Heterostructure; Water purification; Z-scheme.

{"title":"Enhanced pollutant photodegradation activity of graphitic carbon nitride on via bismuth oxyhalide graphene hybridization and the mechanism study†","authors":"Xinghui Liu, Yang Liu, Xiang Guo, Bowen Tao, Xu Ma, Simin Cheng, Ning Tian, Gaihui Liu, Qiao Wu, Viet Q. Bui, Kuldeep K. Saxena, Sankar Ganesh Ramaraj, Jianhui Liu, Fuchun Zhang and Yongfa Zhu","doi":"10.1039/D4IM00105B","DOIUrl":"https://doi.org/10.1039/D4IM00105B","url":null,"abstract":"<p>Addressing the degradation of persistent organic pollutants like bisphenol A (BPA) and rhodamine B (RhB) with a photocatalyst that is both cost-effective and environmentally friendly is a notable challenge. This research presents the synthesis of an optimized g-C<small><sub>3</sub></small>N<small><sub>4</sub></small>/Bi<small><sub>4</sub></small>O<small><sub>5</sub></small>Br<small><sub>2</sub></small> composite featuring a Z-scheme heterojunction structure. The precise band alignment of this composite significantly enhances the separation of photogenerated charges and the production of dominant reactive species. The composite demonstrated exceptional photocatalytic performance, with BPA degradation efficiency nearing 98% and RhB achieving complete degradation within 80 and 35 min under visible light, respectively. These results are approximately 1.3 times greater than the individual performance of CN and BOB, surpassing recent literature benchmarks. Through EPR and free radical capture experiments, the role of h<small><sup>+</sup></small> and ·O<small><sub>2</sub></small><small><sup>−</sup></small> as the primary active free radicals in the degradation process have been confirmed. First-principles calculations validated the experimental results, indicating that the Z-type heterojunction is instrumental in generating active species, thus improving degradation efficiency. This study offers a promising strategy for the design of photocatalysts targeting emerging organic pollutants.</p><p>Keywords: Photocatalysis; g-C<small><sub>3</sub></small>N<small><sub>4</sub></small>; Bi<small><sub>4</sub></small>O<small><sub>5</sub></small>Br<small><sub>2</sub></small>; Heterostructure; Water purification; Z-scheme.</p>","PeriodicalId":29808,"journal":{"name":"Industrial Chemistry & Materials","volume":" 2","pages":" 191-202"},"PeriodicalIF":0.0,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/im/d4im00105b?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143667777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Membrane-free sequential paired electrosynthesis of 1,4-hydroquinone from phenol over a self-supported electrocatalytic electrode† 在自支撑电催化电极上以苯酚为原料进行无膜顺序配对电合成 1,4-氢醌
Pub Date : 2024-08-30 DOI: 10.1039/D4IM00067F
Wei-Ling Zhang, Ya-Jing Li, Yingchun He, Shao Zhang, Haohong Li, Huidong Zheng and Qi-Long Zhu

Sequential paired electrosynthesis capable of the production of organic chemicals through a series of electrochemical reactions that occur consecutively and in pairs are of high significance. Herein, a three-dimensional porous carbon felt-loaded PbO2 electrode (PbO2/CF) with a self-supported nanostructure was fabricated using a double-cathode electrodeposition method, which served as an efficient electrocatalyst enabling the unique sequential paired electrosynthesis of 1,4-hydroquinone (1,4-HQ) from phenol in a membrane-free electrolytic cell. In such an exotic paired electrolysis system, phenol is first oxidized to p-benzoquinone at the anode, which is subsequently reduced to 1,4-HQ at the cathode. The as-obtained PbO2/CF electrode exhibited a remarkable electrochemical performance, achieving impressive conversion and selectivity of 94.5% and 72.1%, respectively, for the conversion of phenol to 1,4-HQ. This exceptional performance can be attributed to the open porous self-supported structure of the PbO2/CF electrode, which improves the active site exposure and substrate adsorption capability and reduces mass and charge transfer resistance. Furthermore, the catalyst electrode well maintained its structure integrity even after 140 hours of long-term use, further highlighting its promising application for the electrosynthesis of 1,4-HQ. Moreover, this sequential paired electrosynthesis strategy can be further extended to other substrates with electron-withdrawing/donating groups over the PbO2/CF electrode. The proof of concept in this innovative sequential paired electrosynthesis could provide a sustainable and efficient way to produce various desired organic compounds.

Keywords: Phenol; 1,4-Hydroquinone; Electrocatalysis; Sequential paired electrosynthesis; Self-supported electrodes.

通过一系列成对连续发生的电化学反应生产有机化学品的顺序配对电合成具有重要意义。本文采用双阴极电沉积法制备了一种具有自支撑纳米结构的三维多孔碳毡负载 PbO2 电极(PbO2/CF),并将其作为一种高效电催化剂,在无膜电解池中以苯酚为原料进行了独特的 1,4-hydroquinone (1,4-HQ) 顺序配对电合成。在这种奇特的成对电解系统中,苯酚首先在阳极被氧化成对苯醌,然后在阴极被还原成 1,4-HQ。获得的 PbO2/CF 电极表现出卓越的电化学性能,将苯酚转化为 1,4-HQ 的转化率和选择性分别达到 94.5% 和 72.1%,令人印象深刻。这种优异的性能归功于 PbO2/CF 电极的开放式多孔自支撑结构,它改善了活性位点的暴露和底物吸附能力,降低了质量和电荷转移阻力。此外,催化剂电极在长期使用 140 小时后仍能很好地保持其结构完整性,这进一步凸显了其在 1,4-HQ 电合成中的应用前景。此外,这种顺序配对电合成策略还可进一步扩展到 PbO2/CF 电极上其他具有电子吸收/捐献基团的基质。这种创新的序贯配对电合成的概念验证可为生产各种所需有机化合物提供一种可持续的高效方法。
{"title":"Membrane-free sequential paired electrosynthesis of 1,4-hydroquinone from phenol over a self-supported electrocatalytic electrode†","authors":"Wei-Ling Zhang, Ya-Jing Li, Yingchun He, Shao Zhang, Haohong Li, Huidong Zheng and Qi-Long Zhu","doi":"10.1039/D4IM00067F","DOIUrl":"10.1039/D4IM00067F","url":null,"abstract":"<p>Sequential paired electrosynthesis capable of the production of organic chemicals through a series of electrochemical reactions that occur consecutively and in pairs are of high significance. Herein, a three-dimensional porous carbon felt-loaded PbO<small><sub>2</sub></small> electrode (PbO<small><sub>2</sub></small>/CF) with a self-supported nanostructure was fabricated using a double-cathode electrodeposition method, which served as an efficient electrocatalyst enabling the unique sequential paired electrosynthesis of 1,4-hydroquinone (1,4-HQ) from phenol in a membrane-free electrolytic cell. In such an exotic paired electrolysis system, phenol is first oxidized to <em>p</em>-benzoquinone at the anode, which is subsequently reduced to 1,4-HQ at the cathode. The as-obtained PbO<small><sub>2</sub></small>/CF electrode exhibited a remarkable electrochemical performance, achieving impressive conversion and selectivity of 94.5% and 72.1%, respectively, for the conversion of phenol to 1,4-HQ. This exceptional performance can be attributed to the open porous self-supported structure of the PbO<small><sub>2</sub></small>/CF electrode, which improves the active site exposure and substrate adsorption capability and reduces mass and charge transfer resistance. Furthermore, the catalyst electrode well maintained its structure integrity even after 140 hours of long-term use, further highlighting its promising application for the electrosynthesis of 1,4-HQ. Moreover, this sequential paired electrosynthesis strategy can be further extended to other substrates with electron-withdrawing/donating groups over the PbO<small><sub>2</sub></small>/CF electrode. The proof of concept in this innovative sequential paired electrosynthesis could provide a sustainable and efficient way to produce various desired organic compounds.</p><p>Keywords: Phenol; 1,4-Hydroquinone; Electrocatalysis; Sequential paired electrosynthesis; Self-supported electrodes.</p>","PeriodicalId":29808,"journal":{"name":"Industrial Chemistry & Materials","volume":" 2","pages":" 213-222"},"PeriodicalIF":0.0,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/im/d4im00067f?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toward a low-cost uranium-adsorbing material based on nonwoven fabrics and photografting technology† 基于无纺布和光固化技术的低成本铀吸附材料
Pub Date : 2024-08-07 DOI: 10.1039/D4IM00034J
Zhiwei Zhong, Yanbin Huang and Wantai Yang

Amidoxime-functionalized polymeric adsorbents have attracted great interest for uranium extraction from seawater. However, the current graft polymerization method is time-consuming (2–6 h), wasteful in reagent, and hence not economical. Here, amidoxime-functionalized adsorbents based on low-cost polypropylene melt-blown nonwoven fabric (MBF) are produced by a simple, fast and also low-cost surface photografting technology, by which more than 80% of reagents can be saved and grafting time can be reduced to 3 min. The fabricated adsorbents retain their mechanical properties and exhibit excellent uranium adsorption properties, with a maximum uranium adsorption capacity of 400 mg g−1 when the monomer ratio of AN to AA is 8 : 2. Moreover, we showed that the adsorbents could be either reused or simply incinerated for uranium recovery. The photografting technology has great potential for low-cost, continuous industrial production of uranium-adsorbing material.

Keywords: Uranium extraction from seawater; Amidoxime; Nonwoven fabric; Surface photografting.

脒肟功能化聚合物吸附剂在从海水中提取铀方面引起了极大的兴趣。然而,目前的接枝聚合方法耗时长(2-6 小时)、浪费试剂,因此并不经济。本文采用简单、快速、低成本的表面光接枝技术,制备了基于低成本聚丙烯熔喷非织造布(MBF)的脒肟功能化吸附剂,可节省 80% 以上的试剂,并将接枝时间缩短至 3 分钟。当 AN 与 AA 的单体比为 8 : 2 时,最大铀吸附量为 400 mg g-1。此外,我们还发现这些吸附剂既可重复使用,也可直接焚烧以回收铀。光固化技术在低成本、连续工业化生产铀吸附材料方面具有巨大潜力。
{"title":"Toward a low-cost uranium-adsorbing material based on nonwoven fabrics and photografting technology†","authors":"Zhiwei Zhong, Yanbin Huang and Wantai Yang","doi":"10.1039/D4IM00034J","DOIUrl":"10.1039/D4IM00034J","url":null,"abstract":"<p>Amidoxime-functionalized polymeric adsorbents have attracted great interest for uranium extraction from seawater. However, the current graft polymerization method is time-consuming (2–6 h), wasteful in reagent, and hence not economical. Here, amidoxime-functionalized adsorbents based on low-cost polypropylene melt-blown nonwoven fabric (MBF) are produced by a simple, fast and also low-cost surface photografting technology, by which more than 80% of reagents can be saved and grafting time can be reduced to 3 min. The fabricated adsorbents retain their mechanical properties and exhibit excellent uranium adsorption properties, with a maximum uranium adsorption capacity of 400 mg g<small><sup>−1</sup></small> when the monomer ratio of AN to AA is 8 : 2. Moreover, we showed that the adsorbents could be either reused or simply incinerated for uranium recovery. The photografting technology has great potential for low-cost, continuous industrial production of uranium-adsorbing material.</p><p>Keywords: Uranium extraction from seawater; Amidoxime; Nonwoven fabric; Surface photografting.</p>","PeriodicalId":29808,"journal":{"name":"Industrial Chemistry & Materials","volume":" 1","pages":" 57-68"},"PeriodicalIF":0.0,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/im/d4im00034j?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141945605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Depolymerization of PET with ethanol by homogeneous iron catalysts applied for exclusive chemical recycling of cloth waste† 应用于布废料独家化学回收的均相铁催化剂用乙醇解聚 PET
Pub Date : 2024-08-06 DOI: 10.1039/D4IM00081A
Nor Wahida Binti Awang, Muhammad Aidel Bin Ratno Hadiyono, Mohamed Mehawed Abdellatif and Kotohiro Nomura

Acid-, base-free depolymerization of poly(ethylene terephthalate) (PET) with ethanol catalyzed by FeCl3, FeBr3 (1.0–5.0 mol%) gave diethyl terephthalate (DET) and ethylene glycol (EG) exclusively (98–99%, 160–180 °C), and FeCl3 showed better catalytic performance in terms of activity. The FeCl3 catalyst enabled exclusive, selective depolymerization of PET from textile waste to afford DET (and recovered cotton waste), strongly suggesting the possibility of chemical recycling of cloth waste by the transesterification in this catalysis.

Keywords: Depolymerization; PET; Chemical recycling; Textile waste management; Homogeneous catalyst.

用 FeCl3、FeBr3(1.0-5.0 mol%)对聚对苯二甲酸乙二醇酯(PET)与乙醇进行无酸、无碱解聚,只得到对苯二甲酸乙二醇酯(DET)和乙二醇(EG)(98->99 %,160-180 ºC),FeCl3 的催化剂活性表现更好。FeCl3 催化剂能使纺织废料中的 PET 独家进行选择性解聚,生成 DET(和回收的棉花废料),这有力地说明了在该催化反应中通过酯交换反应对纺织废料进行化学回收利用的可能性。
{"title":"Depolymerization of PET with ethanol by homogeneous iron catalysts applied for exclusive chemical recycling of cloth waste†","authors":"Nor Wahida Binti Awang, Muhammad Aidel Bin Ratno Hadiyono, Mohamed Mehawed Abdellatif and Kotohiro Nomura","doi":"10.1039/D4IM00081A","DOIUrl":"10.1039/D4IM00081A","url":null,"abstract":"<p>Acid-, base-free depolymerization of poly(ethylene terephthalate) (PET) with ethanol catalyzed by FeCl<small><sub>3</sub></small>, FeBr<small><sub>3</sub></small> (1.0–5.0 mol%) gave diethyl terephthalate (DET) and ethylene glycol (EG) exclusively (98–99%, 160–180 °C), and FeCl<small><sub>3</sub></small> showed better catalytic performance in terms of activity. The FeCl<small><sub>3</sub></small> catalyst enabled exclusive, selective depolymerization of PET from textile waste to afford DET (and recovered cotton waste), strongly suggesting the possibility of chemical recycling of cloth waste by the transesterification in this catalysis.</p><p>Keywords: Depolymerization; PET; Chemical recycling; Textile waste management; Homogeneous catalyst.</p>","PeriodicalId":29808,"journal":{"name":"Industrial Chemistry & Materials","volume":" 1","pages":" 49-56"},"PeriodicalIF":0.0,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/im/d4im00081a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141945606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Industrial Chemistry & Materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1