Wangcheng Liu, Yaqiong Zhang, Peter Chen, Lin Shao, Yiding Cao, Baoming Zhao, Ellen C. Lee, Xiaojiang Wang and Jinwen Zhang
As the polyurethane foam (PUF) market, especially in the automotive sector, continues to grow, the environmental impacts of its petrochemical demands and end-of-life waste have motivated the industry to look for more sustainable solutions. This study explores the preparation of recyclable PUFs using commercially available soy polyols (Cargill's BiOH), aiming to enable improved thermal reprocessability of flexible PUFs via vitrimer chemistry. A series of “soy-PUFs” was produced by partially substituting petrochemical polyether polyols with 25% or 50% soy polyols in a standard reference formulation. Incorporation of soy polyols resulted in an increase in the stiffness of the resulting foams. Employing a modest amount (∼0.5 wt%) of dibutyltin dilaurate (DBTDL) in the formulations facilitated dynamic covalent bond exchanges in the cross-linked network during a mild “foam-to-sheet” reprocessing process (160 °C), converting malleable PUFs into densified sheet materials (PUS) with proper compactness and mechanical performance (e.g., tensile modulus = ∼50 MPa). Soy-PUFs demonstrated a modestly enhanced stress relaxation behavior, suggesting adequate reprocessing ability. DMA results demonstrated the phenomenon of forming an “intermediate” region between the hard and soft domains of PUSs after reprocessing.
{"title":"Scalable manufacturing and reprocessing of vitrimerized flexible polyurethane foam (PUF) based on commercial soy polyols†","authors":"Wangcheng Liu, Yaqiong Zhang, Peter Chen, Lin Shao, Yiding Cao, Baoming Zhao, Ellen C. Lee, Xiaojiang Wang and Jinwen Zhang","doi":"10.1039/D4IM00117F","DOIUrl":"https://doi.org/10.1039/D4IM00117F","url":null,"abstract":"<p>As the polyurethane foam (PUF) market, especially in the automotive sector, continues to grow, the environmental impacts of its petrochemical demands and end-of-life waste have motivated the industry to look for more sustainable solutions. This study explores the preparation of recyclable PUFs using commercially available soy polyols (Cargill's BiOH), aiming to enable improved thermal reprocessability of flexible PUFs <em>via</em> vitrimer chemistry. A series of “soy-PUFs” was produced by partially substituting petrochemical polyether polyols with 25% or 50% soy polyols in a standard reference formulation. Incorporation of soy polyols resulted in an increase in the stiffness of the resulting foams. Employing a modest amount (∼0.5 wt%) of dibutyltin dilaurate (DBTDL) in the formulations facilitated dynamic covalent bond exchanges in the cross-linked network during a mild “foam-to-sheet” reprocessing process (160 °C), converting malleable PUFs into densified sheet materials (PUS) with proper compactness and mechanical performance (<em>e.g.</em>, tensile modulus = ∼50 MPa). Soy-PUFs demonstrated a modestly enhanced stress relaxation behavior, suggesting adequate reprocessing ability. DMA results demonstrated the phenomenon of forming an “intermediate” region between the hard and soft domains of PUSs after reprocessing.</p><p>Keywords: Polyurethane foam; Soybean oil; Polyols; Vitrimer chemistry; Reprocessing; Recycling.</p>","PeriodicalId":29808,"journal":{"name":"Industrial Chemistry & Materials","volume":" 2","pages":" 231-245"},"PeriodicalIF":0.0,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/im/d4im00117f?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143667790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Negar Sabouhanian, Jacek Lipkowski and Aicheng Chen
Electrochemical CO2 reduction has favorable industrial relevance due to its integrability with renewable energies and controllable product generation. Bismuth-based catalysts have emerged as promising candidates in this regard due to their intriguing electrochemical properties and cost-effectiveness. This review focuses on recent advances in bismuth-based catalysts for the electrochemical reduction of CO2, including synthesis methods and approaches for performance improvements. Insights into product formations using Bi-based catalysts are also presented, where in situ FTIR and Raman spectroscopic studies are highlighted to understand the structural evolution of the catalysts and to decipher the mechanisms of CO2 reduction. Further, recent progress of electrochemical CO2 reduction from an industrial perspective and strategies for further development of the bismuth-based catalysts with high activity, selectivity and stability towards practical applications are discussed.
Keywords: Electrochemical CO2 reduction; Bismuth; Nanomaterials; Electrocatalysts; In situ spectroscopy.
{"title":"Unveiling the potential of bismuth-based catalysts for electrochemical CO2 reduction","authors":"Negar Sabouhanian, Jacek Lipkowski and Aicheng Chen","doi":"10.1039/D4IM00126E","DOIUrl":"https://doi.org/10.1039/D4IM00126E","url":null,"abstract":"<p>Electrochemical CO<small><sub>2</sub></small> reduction has favorable industrial relevance due to its integrability with renewable energies and controllable product generation. Bismuth-based catalysts have emerged as promising candidates in this regard due to their intriguing electrochemical properties and cost-effectiveness. This review focuses on recent advances in bismuth-based catalysts for the electrochemical reduction of CO<small><sub>2</sub></small>, including synthesis methods and approaches for performance improvements. Insights into product formations using Bi-based catalysts are also presented, where <em>in situ</em> FTIR and Raman spectroscopic studies are highlighted to understand the structural evolution of the catalysts and to decipher the mechanisms of CO<small><sub>2</sub></small> reduction. Further, recent progress of electrochemical CO<small><sub>2</sub></small> reduction from an industrial perspective and strategies for further development of the bismuth-based catalysts with high activity, selectivity and stability towards practical applications are discussed.</p><p>Keywords: Electrochemical CO<small><sub>2</sub></small> reduction; Bismuth; Nanomaterials; Electrocatalysts; <em>In situ</em> spectroscopy.</p>","PeriodicalId":29808,"journal":{"name":"Industrial Chemistry & Materials","volume":" 2","pages":" 131-150"},"PeriodicalIF":0.0,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/im/d4im00126e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143667774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A liquid thermoelectric conversion device (LTE) converts environmental heat into electric power via the electrochemical Seebeck coefficient α. The maximum power (Wmax) is expressed as , where ΔT and R′ are the temperature difference between electrodes and device resistance in operation, respectively. Here, we systematically investigated the resistance components of LTEs composed of aqueous, methanol (MeOH) and acetone solutions containing 0.8 M Fe(ClO4)2/Fe(ClO4)3. We found that the charge transfer resistance Rct of the MeOH LTE is the smallest among the three LTEs. We demonstrated that the Wmax of the MeOH LTE is slightly larger than or comparable with that of the corresponding aqueous LTE. We further discussed the effects of the convection of an electrolyte on R′.
{"title":"Methanol-based thermoelectric conversion device with high power†","authors":"Touya Aiba, Haruka Yamada and Yutaka Moritomo","doi":"10.1039/D4IM00113C","DOIUrl":"https://doi.org/10.1039/D4IM00113C","url":null,"abstract":"<p>A liquid thermoelectric conversion device (LTE) converts environmental heat into electric power <em>via</em> the electrochemical Seebeck coefficient <em>α</em>. The maximum power (<em>W</em><small><sub>max</sub></small>) is expressed as <img>, where Δ<em>T</em> and <em>R</em>′ are the temperature difference between electrodes and device resistance in operation, respectively. Here, we systematically investigated the resistance components of LTEs composed of aqueous, methanol (MeOH) and acetone solutions containing 0.8 M Fe(ClO<small><sub>4</sub></small>)<small><sub>2</sub></small>/Fe(ClO<small><sub>4</sub></small>)<small><sub>3</sub></small>. We found that the charge transfer resistance <em>R</em><small><sub>ct</sub></small> of the MeOH LTE is the smallest among the three LTEs. We demonstrated that the <em>W</em><small><sub>max</sub></small> of the MeOH LTE is slightly larger than or comparable with that of the corresponding aqueous LTE. We further discussed the effects of the convection of an electrolyte on <em>R</em>′.</p><p>Keywords: Liquid thermoelectric conversion; Methanol; Resistivity components; Coated electrode.</p>","PeriodicalId":29808,"journal":{"name":"Industrial Chemistry & Materials","volume":" 2","pages":" 223-230"},"PeriodicalIF":0.0,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/im/d4im00113c?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143667789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Quanguo Hao, Yuhua Zhu, Yuan Li, Zhenhua Li, Hong Yuan and Shuxin Ouyang
Photocatalytic hydrogen evolution based on the use of carbon nitride (CN) catalyst offers a sustainable route to convert solar energy into hydrogen energy; however, its activity is severely restricted by the sluggish transfer of photogenerated charges. Herein, we report a novel approach involving boron (B) doping-induced π-electron delocalization in CN for efficient hydrogen (H2) evolution. The as-prepared B-doped CN (BCN) catalyst presented an 8.6-fold enhancement in the H2-evolution rate (7924.0 μmol h−1 g−1) under visible-light irradiation compared with pristine CN, which corresponded to an apparent quantum yield (AQY) of 14.5% at 405 nm. Experimental analysis and density functional theory (DFT) calculations demonstrated that B doping induced π-electron delocalization in conjugated CN rings to generate a new intermediate state within the band gap to provide a new transfer path for visible-light utilization, thus achieving the high separation and transfer of photoinduced carriers. This work provides a new approach to adjust the electronic structure of CN-like conjugated polymer semiconductors for efficient catalytic energy conversion.
Keywords: B doping; π-electron delocalization; H2 evolution; Photocatalysis.
{"title":"Rational design of a carbon nitride photocatalyst with in-plane electron delocalization for photocatalytic hydrogen evolution†","authors":"Quanguo Hao, Yuhua Zhu, Yuan Li, Zhenhua Li, Hong Yuan and Shuxin Ouyang","doi":"10.1039/D4IM00118D","DOIUrl":"https://doi.org/10.1039/D4IM00118D","url":null,"abstract":"<p>Photocatalytic hydrogen evolution based on the use of carbon nitride (CN) catalyst offers a sustainable route to convert solar energy into hydrogen energy; however, its activity is severely restricted by the sluggish transfer of photogenerated charges. Herein, we report a novel approach involving boron (B) doping-induced π-electron delocalization in CN for efficient hydrogen (H<small><sub>2</sub></small>) evolution. The as-prepared B-doped CN (BCN) catalyst presented an 8.6-fold enhancement in the H<small><sub>2</sub></small>-evolution rate (7924.0 μmol h<small><sup>−1</sup></small> g<small><sup>−1</sup></small>) under visible-light irradiation compared with pristine CN, which corresponded to an apparent quantum yield (AQY) of 14.5% at 405 nm. Experimental analysis and density functional theory (DFT) calculations demonstrated that B doping induced π-electron delocalization in conjugated CN rings to generate a new intermediate state within the band gap to provide a new transfer path for visible-light utilization, thus achieving the high separation and transfer of photoinduced carriers. This work provides a new approach to adjust the electronic structure of CN-like conjugated polymer semiconductors for efficient catalytic energy conversion.</p><p>Keywords: B doping; π-electron delocalization; H<small><sub>2</sub></small> evolution; Photocatalysis.</p>","PeriodicalId":29808,"journal":{"name":"Industrial Chemistry & Materials","volume":" 2","pages":" 203-212"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/im/d4im00118d?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143667788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Clement G. Collins Rice, Alexander Evans, Zoë R. Turner, Jirut Wattoom and Dermot O'Hare
Ultra-high molecular weight polyethylene (UHMWPE, Mw > 106 g mol−1) has been prepared using slurry-phase titanium permethylindenyl-phenoxy (PHENI*) catalysts. Four strategies have been investigated for improving the melt processability of UHMWPE, which is the chief limiting factor to the applications of this high-performance polymer. 1) Active site engineering was used to explore the entanglement density in the resulting polymer, with substantially disentangled PE identified through thermal and rheological characterisation. 2) Hydrogen and ZnEt2 were employed as chain transfer agents to modulate the polyethylene molecular weight and distribution (MWD). A sequential reactivity protocol using ZnEt2 was able to produce bimodal UHMWPE with improved processability. 3) MWD tuning was further investigated using multisite catalysts, with the reaction conditions and Ti : Zr ratio able to control MWD to essentially arbitrary shapes. The inclusion of low molecular weight fractions into UHMWPE improves the processability without compromising mechanical characteristics. 4) Polymer-reinforced composite blends of UHMWPE with either HDPE or LDPE as a highly processable matrix were extruded and explored, with polymer miscibility and mechanical properties studied in detail.
{"title":"Strategies for enhancing the processability of UHMWPE†","authors":"Clement G. Collins Rice, Alexander Evans, Zoë R. Turner, Jirut Wattoom and Dermot O'Hare","doi":"10.1039/D4IM00104D","DOIUrl":"https://doi.org/10.1039/D4IM00104D","url":null,"abstract":"<p>Ultra-high molecular weight polyethylene (UHMWPE, <em>M</em><small><sub>w</sub></small> > 10<small><sup>6</sup></small> g mol<small><sup>−1</sup></small>) has been prepared using slurry-phase titanium permethylindenyl-phenoxy (PHENI*) catalysts. Four strategies have been investigated for improving the melt processability of UHMWPE, which is the chief limiting factor to the applications of this high-performance polymer. 1) Active site engineering was used to explore the entanglement density in the resulting polymer, with substantially disentangled PE identified through thermal and rheological characterisation. 2) Hydrogen and ZnEt<small><sub>2</sub></small> were employed as chain transfer agents to modulate the polyethylene molecular weight and distribution (MWD). A sequential reactivity protocol using ZnEt<small><sub>2</sub></small> was able to produce bimodal UHMWPE with improved processability. 3) MWD tuning was further investigated using multisite catalysts, with the reaction conditions and Ti : Zr ratio able to control MWD to essentially arbitrary shapes. The inclusion of low molecular weight fractions into UHMWPE improves the processability without compromising mechanical characteristics. 4) Polymer-reinforced composite blends of UHMWPE with either HDPE or LDPE as a highly processable matrix were extruded and explored, with polymer miscibility and mechanical properties studied in detail.</p><p>Keywords: Ultra-high molecular weight polyethylene; Processability; Molecular weight distribution; Polymer composites; Chain transfer agents.</p>","PeriodicalId":29808,"journal":{"name":"Industrial Chemistry & Materials","volume":" 2","pages":" 178-190"},"PeriodicalIF":0.0,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/im/d4im00104d?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143667776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yunpei Lu, Xinyi Zhang, Yong Wu, Hao Cheng and Yingying Lu
Currently, the practical application of liquid lithium-ion batteries faces challenges in meeting the requirements of high energy density and safety. To address concerns such as electrolyte leakage and flammability, solid polymer electrolytes (SPEs) have emerged as promising alternatives to liquid electrolytes. SPEs, particularly those synthesized via in situ polymerization processes, offer advantages in establishing robust interface contacts and compatibility with existing industrial production lines. However, the electrochemical stability of SPEs remains a hurdle for high-voltage lithium metal batteries (LMBs). To enhance interface uniformity, electrochemical stability, and thermal stability, researchers commonly employ fluorination strategies, thus expanding the potential of SPEs in high-voltage, long-cycling LMBs. Fluorine plays a crucial role in achieving these objectives due to its high electronegativity, polarization, outstanding dielectric properties, strong bond strength, stability, and hydrophobic nature. In this study, we delve into how fluorinated electrolytes improve interface stability between SPEs and electrodes by examining their underlying mechanisms. Besides, we provide an overview of current fluorination strategies and their impact on battery performance. Furthermore, we discuss challenges and issues associated with current in situ polymerized fluorinated SPE routes and propose practical strategies for consideration.
Keywords: Lithium metal batteries; In situ polymerization; Fluorinated polymer electrolytes; High-voltage; Long cycling; Stable interface.
{"title":"In situ polymerization of fluorinated electrolytes for high-voltage and long-cycling solid-state lithium metal batteries","authors":"Yunpei Lu, Xinyi Zhang, Yong Wu, Hao Cheng and Yingying Lu","doi":"10.1039/D4IM00082J","DOIUrl":"https://doi.org/10.1039/D4IM00082J","url":null,"abstract":"<p>Currently, the practical application of liquid lithium-ion batteries faces challenges in meeting the requirements of high energy density and safety. To address concerns such as electrolyte leakage and flammability, solid polymer electrolytes (SPEs) have emerged as promising alternatives to liquid electrolytes. SPEs, particularly those synthesized <em>via in situ</em> polymerization processes, offer advantages in establishing robust interface contacts and compatibility with existing industrial production lines. However, the electrochemical stability of SPEs remains a hurdle for high-voltage lithium metal batteries (LMBs). To enhance interface uniformity, electrochemical stability, and thermal stability, researchers commonly employ fluorination strategies, thus expanding the potential of SPEs in high-voltage, long-cycling LMBs. Fluorine plays a crucial role in achieving these objectives due to its high electronegativity, polarization, outstanding dielectric properties, strong bond strength, stability, and hydrophobic nature. In this study, we delve into how fluorinated electrolytes improve interface stability between SPEs and electrodes by examining their underlying mechanisms. Besides, we provide an overview of current fluorination strategies and their impact on battery performance. Furthermore, we discuss challenges and issues associated with current <em>in situ</em> polymerized fluorinated SPE routes and propose practical strategies for consideration.</p><p>Keywords: Lithium metal batteries; <em>In situ</em> polymerization; Fluorinated polymer electrolytes; High-voltage; Long cycling; Stable interface.</p>","PeriodicalId":29808,"journal":{"name":"Industrial Chemistry & Materials","volume":" 2","pages":" 151-177"},"PeriodicalIF":0.0,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/im/d4im00082j?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143667775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xinghui Liu, Yang Liu, Xiang Guo, Bowen Tao, Xu Ma, Simin Cheng, Ning Tian, Gaihui Liu, Qiao Wu, Viet Q. Bui, Kuldeep K. Saxena, Sankar Ganesh Ramaraj, Jianhui Liu, Fuchun Zhang and Yongfa Zhu
Addressing the degradation of persistent organic pollutants like bisphenol A (BPA) and rhodamine B (RhB) with a photocatalyst that is both cost-effective and environmentally friendly is a notable challenge. This research presents the synthesis of an optimized g-C3N4/Bi4O5Br2 composite featuring a Z-scheme heterojunction structure. The precise band alignment of this composite significantly enhances the separation of photogenerated charges and the production of dominant reactive species. The composite demonstrated exceptional photocatalytic performance, with BPA degradation efficiency nearing 98% and RhB achieving complete degradation within 80 and 35 min under visible light, respectively. These results are approximately 1.3 times greater than the individual performance of CN and BOB, surpassing recent literature benchmarks. Through EPR and free radical capture experiments, the role of h+ and ·O2− as the primary active free radicals in the degradation process have been confirmed. First-principles calculations validated the experimental results, indicating that the Z-type heterojunction is instrumental in generating active species, thus improving degradation efficiency. This study offers a promising strategy for the design of photocatalysts targeting emerging organic pollutants.
Keywords: Photocatalysis; g-C3N4; Bi4O5Br2; Heterostructure; Water purification; Z-scheme.
{"title":"Enhanced pollutant photodegradation activity of graphitic carbon nitride on via bismuth oxyhalide graphene hybridization and the mechanism study†","authors":"Xinghui Liu, Yang Liu, Xiang Guo, Bowen Tao, Xu Ma, Simin Cheng, Ning Tian, Gaihui Liu, Qiao Wu, Viet Q. Bui, Kuldeep K. Saxena, Sankar Ganesh Ramaraj, Jianhui Liu, Fuchun Zhang and Yongfa Zhu","doi":"10.1039/D4IM00105B","DOIUrl":"https://doi.org/10.1039/D4IM00105B","url":null,"abstract":"<p>Addressing the degradation of persistent organic pollutants like bisphenol A (BPA) and rhodamine B (RhB) with a photocatalyst that is both cost-effective and environmentally friendly is a notable challenge. This research presents the synthesis of an optimized g-C<small><sub>3</sub></small>N<small><sub>4</sub></small>/Bi<small><sub>4</sub></small>O<small><sub>5</sub></small>Br<small><sub>2</sub></small> composite featuring a Z-scheme heterojunction structure. The precise band alignment of this composite significantly enhances the separation of photogenerated charges and the production of dominant reactive species. The composite demonstrated exceptional photocatalytic performance, with BPA degradation efficiency nearing 98% and RhB achieving complete degradation within 80 and 35 min under visible light, respectively. These results are approximately 1.3 times greater than the individual performance of CN and BOB, surpassing recent literature benchmarks. Through EPR and free radical capture experiments, the role of h<small><sup>+</sup></small> and ·O<small><sub>2</sub></small><small><sup>−</sup></small> as the primary active free radicals in the degradation process have been confirmed. First-principles calculations validated the experimental results, indicating that the Z-type heterojunction is instrumental in generating active species, thus improving degradation efficiency. This study offers a promising strategy for the design of photocatalysts targeting emerging organic pollutants.</p><p>Keywords: Photocatalysis; g-C<small><sub>3</sub></small>N<small><sub>4</sub></small>; Bi<small><sub>4</sub></small>O<small><sub>5</sub></small>Br<small><sub>2</sub></small>; Heterostructure; Water purification; Z-scheme.</p>","PeriodicalId":29808,"journal":{"name":"Industrial Chemistry & Materials","volume":" 2","pages":" 191-202"},"PeriodicalIF":0.0,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/im/d4im00105b?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143667777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sequential paired electrosynthesis capable of the production of organic chemicals through a series of electrochemical reactions that occur consecutively and in pairs are of high significance. Herein, a three-dimensional porous carbon felt-loaded PbO2 electrode (PbO2/CF) with a self-supported nanostructure was fabricated using a double-cathode electrodeposition method, which served as an efficient electrocatalyst enabling the unique sequential paired electrosynthesis of 1,4-hydroquinone (1,4-HQ) from phenol in a membrane-free electrolytic cell. In such an exotic paired electrolysis system, phenol is first oxidized to p-benzoquinone at the anode, which is subsequently reduced to 1,4-HQ at the cathode. The as-obtained PbO2/CF electrode exhibited a remarkable electrochemical performance, achieving impressive conversion and selectivity of 94.5% and 72.1%, respectively, for the conversion of phenol to 1,4-HQ. This exceptional performance can be attributed to the open porous self-supported structure of the PbO2/CF electrode, which improves the active site exposure and substrate adsorption capability and reduces mass and charge transfer resistance. Furthermore, the catalyst electrode well maintained its structure integrity even after 140 hours of long-term use, further highlighting its promising application for the electrosynthesis of 1,4-HQ. Moreover, this sequential paired electrosynthesis strategy can be further extended to other substrates with electron-withdrawing/donating groups over the PbO2/CF electrode. The proof of concept in this innovative sequential paired electrosynthesis could provide a sustainable and efficient way to produce various desired organic compounds.
{"title":"Membrane-free sequential paired electrosynthesis of 1,4-hydroquinone from phenol over a self-supported electrocatalytic electrode†","authors":"Wei-Ling Zhang, Ya-Jing Li, Yingchun He, Shao Zhang, Haohong Li, Huidong Zheng and Qi-Long Zhu","doi":"10.1039/D4IM00067F","DOIUrl":"10.1039/D4IM00067F","url":null,"abstract":"<p>Sequential paired electrosynthesis capable of the production of organic chemicals through a series of electrochemical reactions that occur consecutively and in pairs are of high significance. Herein, a three-dimensional porous carbon felt-loaded PbO<small><sub>2</sub></small> electrode (PbO<small><sub>2</sub></small>/CF) with a self-supported nanostructure was fabricated using a double-cathode electrodeposition method, which served as an efficient electrocatalyst enabling the unique sequential paired electrosynthesis of 1,4-hydroquinone (1,4-HQ) from phenol in a membrane-free electrolytic cell. In such an exotic paired electrolysis system, phenol is first oxidized to <em>p</em>-benzoquinone at the anode, which is subsequently reduced to 1,4-HQ at the cathode. The as-obtained PbO<small><sub>2</sub></small>/CF electrode exhibited a remarkable electrochemical performance, achieving impressive conversion and selectivity of 94.5% and 72.1%, respectively, for the conversion of phenol to 1,4-HQ. This exceptional performance can be attributed to the open porous self-supported structure of the PbO<small><sub>2</sub></small>/CF electrode, which improves the active site exposure and substrate adsorption capability and reduces mass and charge transfer resistance. Furthermore, the catalyst electrode well maintained its structure integrity even after 140 hours of long-term use, further highlighting its promising application for the electrosynthesis of 1,4-HQ. Moreover, this sequential paired electrosynthesis strategy can be further extended to other substrates with electron-withdrawing/donating groups over the PbO<small><sub>2</sub></small>/CF electrode. The proof of concept in this innovative sequential paired electrosynthesis could provide a sustainable and efficient way to produce various desired organic compounds.</p><p>Keywords: Phenol; 1,4-Hydroquinone; Electrocatalysis; Sequential paired electrosynthesis; Self-supported electrodes.</p>","PeriodicalId":29808,"journal":{"name":"Industrial Chemistry & Materials","volume":" 2","pages":" 213-222"},"PeriodicalIF":0.0,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/im/d4im00067f?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amidoxime-functionalized polymeric adsorbents have attracted great interest for uranium extraction from seawater. However, the current graft polymerization method is time-consuming (2–6 h), wasteful in reagent, and hence not economical. Here, amidoxime-functionalized adsorbents based on low-cost polypropylene melt-blown nonwoven fabric (MBF) are produced by a simple, fast and also low-cost surface photografting technology, by which more than 80% of reagents can be saved and grafting time can be reduced to 3 min. The fabricated adsorbents retain their mechanical properties and exhibit excellent uranium adsorption properties, with a maximum uranium adsorption capacity of 400 mg g−1 when the monomer ratio of AN to AA is 8 : 2. Moreover, we showed that the adsorbents could be either reused or simply incinerated for uranium recovery. The photografting technology has great potential for low-cost, continuous industrial production of uranium-adsorbing material.
Keywords: Uranium extraction from seawater; Amidoxime; Nonwoven fabric; Surface photografting.
脒肟功能化聚合物吸附剂在从海水中提取铀方面引起了极大的兴趣。然而,目前的接枝聚合方法耗时长(2-6 小时)、浪费试剂,因此并不经济。本文采用简单、快速、低成本的表面光接枝技术,制备了基于低成本聚丙烯熔喷非织造布(MBF)的脒肟功能化吸附剂,可节省 80% 以上的试剂,并将接枝时间缩短至 3 分钟。当 AN 与 AA 的单体比为 8 : 2 时,最大铀吸附量为 400 mg g-1。此外,我们还发现这些吸附剂既可重复使用,也可直接焚烧以回收铀。光固化技术在低成本、连续工业化生产铀吸附材料方面具有巨大潜力。
{"title":"Toward a low-cost uranium-adsorbing material based on nonwoven fabrics and photografting technology†","authors":"Zhiwei Zhong, Yanbin Huang and Wantai Yang","doi":"10.1039/D4IM00034J","DOIUrl":"10.1039/D4IM00034J","url":null,"abstract":"<p>Amidoxime-functionalized polymeric adsorbents have attracted great interest for uranium extraction from seawater. However, the current graft polymerization method is time-consuming (2–6 h), wasteful in reagent, and hence not economical. Here, amidoxime-functionalized adsorbents based on low-cost polypropylene melt-blown nonwoven fabric (MBF) are produced by a simple, fast and also low-cost surface photografting technology, by which more than 80% of reagents can be saved and grafting time can be reduced to 3 min. The fabricated adsorbents retain their mechanical properties and exhibit excellent uranium adsorption properties, with a maximum uranium adsorption capacity of 400 mg g<small><sup>−1</sup></small> when the monomer ratio of AN to AA is 8 : 2. Moreover, we showed that the adsorbents could be either reused or simply incinerated for uranium recovery. The photografting technology has great potential for low-cost, continuous industrial production of uranium-adsorbing material.</p><p>Keywords: Uranium extraction from seawater; Amidoxime; Nonwoven fabric; Surface photografting.</p>","PeriodicalId":29808,"journal":{"name":"Industrial Chemistry & Materials","volume":" 1","pages":" 57-68"},"PeriodicalIF":0.0,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/im/d4im00034j?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141945605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nor Wahida Binti Awang, Muhammad Aidel Bin Ratno Hadiyono, Mohamed Mehawed Abdellatif and Kotohiro Nomura
Acid-, base-free depolymerization of poly(ethylene terephthalate) (PET) with ethanol catalyzed by FeCl3, FeBr3 (1.0–5.0 mol%) gave diethyl terephthalate (DET) and ethylene glycol (EG) exclusively (98–99%, 160–180 °C), and FeCl3 showed better catalytic performance in terms of activity. The FeCl3 catalyst enabled exclusive, selective depolymerization of PET from textile waste to afford DET (and recovered cotton waste), strongly suggesting the possibility of chemical recycling of cloth waste by the transesterification in this catalysis.
Keywords: Depolymerization; PET; Chemical recycling; Textile waste management; Homogeneous catalyst.
用 FeCl3、FeBr3(1.0-5.0 mol%)对聚对苯二甲酸乙二醇酯(PET)与乙醇进行无酸、无碱解聚,只得到对苯二甲酸乙二醇酯(DET)和乙二醇(EG)(98->99 %,160-180 ºC),FeCl3 的催化剂活性表现更好。FeCl3 催化剂能使纺织废料中的 PET 独家进行选择性解聚,生成 DET(和回收的棉花废料),这有力地说明了在该催化反应中通过酯交换反应对纺织废料进行化学回收利用的可能性。
{"title":"Depolymerization of PET with ethanol by homogeneous iron catalysts applied for exclusive chemical recycling of cloth waste†","authors":"Nor Wahida Binti Awang, Muhammad Aidel Bin Ratno Hadiyono, Mohamed Mehawed Abdellatif and Kotohiro Nomura","doi":"10.1039/D4IM00081A","DOIUrl":"10.1039/D4IM00081A","url":null,"abstract":"<p>Acid-, base-free depolymerization of poly(ethylene terephthalate) (PET) with ethanol catalyzed by FeCl<small><sub>3</sub></small>, FeBr<small><sub>3</sub></small> (1.0–5.0 mol%) gave diethyl terephthalate (DET) and ethylene glycol (EG) exclusively (98–99%, 160–180 °C), and FeCl<small><sub>3</sub></small> showed better catalytic performance in terms of activity. The FeCl<small><sub>3</sub></small> catalyst enabled exclusive, selective depolymerization of PET from textile waste to afford DET (and recovered cotton waste), strongly suggesting the possibility of chemical recycling of cloth waste by the transesterification in this catalysis.</p><p>Keywords: Depolymerization; PET; Chemical recycling; Textile waste management; Homogeneous catalyst.</p>","PeriodicalId":29808,"journal":{"name":"Industrial Chemistry & Materials","volume":" 1","pages":" 49-56"},"PeriodicalIF":0.0,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/im/d4im00081a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141945606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}