Eigenmode SNR increasing method for ML criterion based space-time linear precoder

S. Narieda, K. Yamashita
{"title":"Eigenmode SNR increasing method for ML criterion based space-time linear precoder","authors":"S. Narieda, K. Yamashita","doi":"10.1109/CAMAP.2005.1574216","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an eigenmode SNR increasing method for a maximum likelihood (ML) criterion based space-time linear precoder (ML-STLP). In the proposed method, several ML-STLPs are employed for one frame whereas only one ML-STLP is employed in the conventional method. When over two ML-STLPs are employed, the same ML-STLPs, which have short preceded symbol length, are arranged in parallel. Also, a length of preceded symbol for one frame and a data rate are same between the proposed method and the conventional method. We investigate the effect of the preceded symbol length on the resulting eigenmode SNR and show that the eigenmode SNR increasing can be achieved by selecting the preceded symbol length with higher eigenmode SNR depending on the channel condition. Also, the applicability of the proposed method is demonstrated by a computer simulation","PeriodicalId":281761,"journal":{"name":"1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005.","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMAP.2005.1574216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose an eigenmode SNR increasing method for a maximum likelihood (ML) criterion based space-time linear precoder (ML-STLP). In the proposed method, several ML-STLPs are employed for one frame whereas only one ML-STLP is employed in the conventional method. When over two ML-STLPs are employed, the same ML-STLPs, which have short preceded symbol length, are arranged in parallel. Also, a length of preceded symbol for one frame and a data rate are same between the proposed method and the conventional method. We investigate the effect of the preceded symbol length on the resulting eigenmode SNR and show that the eigenmode SNR increasing can be achieved by selecting the preceded symbol length with higher eigenmode SNR depending on the channel condition. Also, the applicability of the proposed method is demonstrated by a computer simulation
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于ML准则的时空线性预编码器的特征模信噪比增加方法
本文提出了一种基于极大似然准则的时空线性预编码器(ML- stlp)的特征模信噪比增加方法。该方法在一帧中使用多个ML-STLP,而传统方法只使用一个ML-STLP。当使用两个以上的ml - stlp时,相同的ml - stlp(前面的符号长度较短)被并行排列。此外,该方法与传统方法在一帧的前置符号长度和数据速率上是相同的。我们研究了前导符号长度对结果特征模信噪比的影响,并表明根据信道条件选择具有较高特征模信噪比的前导符号长度可以实现特征模信噪比的增加。最后,通过计算机仿真验证了该方法的适用性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Soft decode and forward improves cooperative communications Blind identification of under-determined mixtures based on the characteristic function: influence of the knowledge of source PDF's Recognition of the predetermined random signals involving the unknown signals Combined direction finders of point noise radiation sources in AA based on adaptive lattice filters Neural network computational technique for high-resolution remote sensing image reconstruction with system fusion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1