A reconfigurable model for virtual tumour detection within a breast

M. Solanki, V. Raja
{"title":"A reconfigurable model for virtual tumour detection within a breast","authors":"M. Solanki, V. Raja","doi":"10.1109/BIYOMUT.2010.5479779","DOIUrl":null,"url":null,"abstract":"This paper details progress towards a real time palpation simulator. We explore the potential of employing a mass spring system coupled with a haptic interface to realise this. Our motivation lies with enhancing the skills required to detect breast cancer as early as possible. However there are issues in emulating the behaviour of soft tissues using this approach, particularly if the composition of the model is inhomogeneous. Therefore our research is concerned with incorporating material properties and enhancing surface response upon contact, which is important for the simulator. We compare our model with analogous finite element models and discrete volumetric models to establish physical realism. Despite the absence of volumetric mesh, the initial evaluations show that the model can reproduce the presence of a tumour in a localised region. The model is receptive and can be reconfigured to simulate a variety of breast-tumour compositions. We look to integrate this with a deformable breast model that can be used to train the skills required for breast palpation.","PeriodicalId":180275,"journal":{"name":"2010 15th National Biomedical Engineering Meeting","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 15th National Biomedical Engineering Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIYOMUT.2010.5479779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper details progress towards a real time palpation simulator. We explore the potential of employing a mass spring system coupled with a haptic interface to realise this. Our motivation lies with enhancing the skills required to detect breast cancer as early as possible. However there are issues in emulating the behaviour of soft tissues using this approach, particularly if the composition of the model is inhomogeneous. Therefore our research is concerned with incorporating material properties and enhancing surface response upon contact, which is important for the simulator. We compare our model with analogous finite element models and discrete volumetric models to establish physical realism. Despite the absence of volumetric mesh, the initial evaluations show that the model can reproduce the presence of a tumour in a localised region. The model is receptive and can be reconfigured to simulate a variety of breast-tumour compositions. We look to integrate this with a deformable breast model that can be used to train the skills required for breast palpation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
乳房内虚拟肿瘤检测的可重构模型
本文详细介绍了实时触诊模拟器的研究进展。我们探索了利用质量弹簧系统与触觉界面相结合来实现这一目标的潜力。我们的动机在于提高尽早发现乳腺癌所需的技能。然而,使用这种方法模拟软组织的行为存在问题,特别是如果模型的组成是不均匀的。因此,我们的研究涉及到结合材料特性和增强接触时的表面响应,这对模拟器很重要。我们将我们的模型与类似的有限元模型和离散体积模型进行比较,以建立物理真实性。尽管没有体积网格,初步评估表明,该模型可以重现肿瘤在局部区域的存在。该模型具有接受性,可以重新配置以模拟各种乳腺肿瘤成分。我们希望将其与可变形的乳房模型相结合,该模型可用于训练乳房触诊所需的技能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of channel noise on spike propagation in myelinated axons The differences of MR spectroscopic imaging and MR diffusion weighted imaging parameters in different subtypes of grade 3 gliomas Chronic recordings from rat motor cortex for developing neural prostheses Classification of ECG Arrythmia beats with Artificial Neural Networks Modifying medical textiles with antibacterial and friction resistance abilities by an alternative nanotextile technology called ion implantation technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1