Hierarchical HMM-based semantic concept labeling model

K. T. Mengistu, M. Hannemann, T. Baum, A. Wendemuth
{"title":"Hierarchical HMM-based semantic concept labeling model","authors":"K. T. Mengistu, M. Hannemann, T. Baum, A. Wendemuth","doi":"10.1109/SLT.2008.4777839","DOIUrl":null,"url":null,"abstract":"An utterance can be conceived as a hidden sequence of semantic concepts expressed in words or phrases. The problem of understanding the meaning underlying a spoken utterance in a dialog system can be partly solved by decoding the hidden sequence of semantic concepts from the observed sequence of words. In this paper, we describe a hierarchical HMM-based semantic concept labeling model trained on semantically unlabeled data. The hierarchical model is compared with a flat concept based model in terms of performance, ambiguity resolution ability and expressive power of the output. It is shown that the proposed method outperforms the flat-concept model in these points.","PeriodicalId":186876,"journal":{"name":"2008 IEEE Spoken Language Technology Workshop","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Spoken Language Technology Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2008.4777839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

An utterance can be conceived as a hidden sequence of semantic concepts expressed in words or phrases. The problem of understanding the meaning underlying a spoken utterance in a dialog system can be partly solved by decoding the hidden sequence of semantic concepts from the observed sequence of words. In this paper, we describe a hierarchical HMM-based semantic concept labeling model trained on semantically unlabeled data. The hierarchical model is compared with a flat concept based model in terms of performance, ambiguity resolution ability and expressive power of the output. It is shown that the proposed method outperforms the flat-concept model in these points.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于层次hmm的语义概念标注模型
一个话语可以被理解为一个隐藏的词或短语表达的语义概念序列。在对话系统中,通过从观察到的单词序列中解码隐藏的语义概念序列,可以部分地解决理解口语话语的意义问题。在本文中,我们描述了一个基于层次式hmm的语义概念标注模型,该模型是在语义未标注数据上训练的。将层次模型与基于平面概念的模型在性能、歧义分辨能力和输出表达能力等方面进行了比较。结果表明,该方法在这些点上优于平面概念模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
“Who is this” quiz dialogue system and users' evaluation Latent dirichlet language model for speech recognition Modelling user behaviour in the HIS-POMDP dialogue manager A syntactic language model based on incremental CCG parsing Improving word segmentation for Thai speech translation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1