{"title":"Photonic-electronic integration with polysilicon photonics in bulk CMOS","authors":"Rajeev J Ram","doi":"10.1117/12.2175462","DOIUrl":null,"url":null,"abstract":"Here, I review the development of a polysilicon photonic platform that is optimized for integration with electronics fabricated on bulk silicon wafers. This platform enables large-scale monolithic integration of silicon photonics with microelectronics. A single-polysilicon deposition and lithography mask were used to simultaneously define the transistor gate, the low-loss waveguides, the depletion modulators, and the photodetectors. Several approaches to reduce optical scattering and mitigate defect state absorption are presented. Waveguide propagation loss as low as 3 dB/cm could be realized in front-end polysilicon with an end-of-line loss as low as 10 dB/cm at 1280nm. The defect state density could be enhanced to enable all-silicon, infrared photodetectors. The resulting microring resonant detectors exhibit over 20% quantum efficiency with 9.7 GHz bandwidth over a wide range of wavelengths. A complete photonic link has been demonstrated at 5 Gbps that transfers digital information from one bulk CMOS photonics chip to another.","PeriodicalId":432115,"journal":{"name":"Photonics West - Optoelectronic Materials and Devices","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics West - Optoelectronic Materials and Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2175462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Here, I review the development of a polysilicon photonic platform that is optimized for integration with electronics fabricated on bulk silicon wafers. This platform enables large-scale monolithic integration of silicon photonics with microelectronics. A single-polysilicon deposition and lithography mask were used to simultaneously define the transistor gate, the low-loss waveguides, the depletion modulators, and the photodetectors. Several approaches to reduce optical scattering and mitigate defect state absorption are presented. Waveguide propagation loss as low as 3 dB/cm could be realized in front-end polysilicon with an end-of-line loss as low as 10 dB/cm at 1280nm. The defect state density could be enhanced to enable all-silicon, infrared photodetectors. The resulting microring resonant detectors exhibit over 20% quantum efficiency with 9.7 GHz bandwidth over a wide range of wavelengths. A complete photonic link has been demonstrated at 5 Gbps that transfers digital information from one bulk CMOS photonics chip to another.