{"title":"Pupil Detection for Augmented and Virtual Reality based on Images with Reduced Bit Depths","authors":"Gernot Fiala, Zhenyu Ye, C. Steger","doi":"10.1109/SAS54819.2022.9881378","DOIUrl":null,"url":null,"abstract":"For future augmented reality (AR) and virtual reality (VR) applications, several different kinds of sensors will be used. These sensors, to give some examples, are used for gesture recognition, head pose tracking and pupil tracking. All these sensors send data to a host platform, where the data must be processed in real-time. This requires high processing power which leads to higher energy consumption. To lower the energy consumption, optimizations of the image processing system are necessary. This paper investigates pupil detection for AR/VR applications based on images with reduced bit depths. It shows that images with reduced bit depths even down to 3 or 2 bits can be used for pupil detection, with almost the same average detection rate. Reduced bit depths of an image reduces the memory foot-print, which allows to perform in-sensor processing for future image sensors and provides the foundation for future in-sensor processing architectures.","PeriodicalId":129732,"journal":{"name":"2022 IEEE Sensors Applications Symposium (SAS)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Sensors Applications Symposium (SAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAS54819.2022.9881378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
For future augmented reality (AR) and virtual reality (VR) applications, several different kinds of sensors will be used. These sensors, to give some examples, are used for gesture recognition, head pose tracking and pupil tracking. All these sensors send data to a host platform, where the data must be processed in real-time. This requires high processing power which leads to higher energy consumption. To lower the energy consumption, optimizations of the image processing system are necessary. This paper investigates pupil detection for AR/VR applications based on images with reduced bit depths. It shows that images with reduced bit depths even down to 3 or 2 bits can be used for pupil detection, with almost the same average detection rate. Reduced bit depths of an image reduces the memory foot-print, which allows to perform in-sensor processing for future image sensors and provides the foundation for future in-sensor processing architectures.