A survey of techniques for energy efficient on-chip communication

V. Raghunathan, M. Srivastava, Rajesh K. Gupta
{"title":"A survey of techniques for energy efficient on-chip communication","authors":"V. Raghunathan, M. Srivastava, Rajesh K. Gupta","doi":"10.1145/775832.776059","DOIUrl":null,"url":null,"abstract":"Interconnects have been shown to be a dominant source of energy consumption in modern day System-on-Chip (SoC) designs. With a large (and growing) number of electronic systems being designed with battery considerations in mind, minimizing the energy consumed in on-chip interconnects becomes crucial. Further, the use of nanometer technologies is making it increasingly important to consider reliability issues during the design of SoC communication architectures. Continued supply voltage scaling has led to decreased noise margins, making interconnects more susceptible to noise sources such as crosstalk, power supply noise, radiation induced defects, etc. The resulting transient faults cause the interconnect to behave as an unreliable transport medium for data signals. Therefore, fault tolerant communication mechanism, such as Automatic Repeat Request (ARQ), Forward Error Correction (FEC), etc., which have been widely used in the networking community, are likely to percolate to the SoC domain. This paper presents a survey of techniques for energy efficient on-chip communication. Techniques operating at different levels of the communication design hierarchy are described, including circuit-level techniques, such as low voltage signaling, architecture-level techniques, such as communication architecture selection and bus isolation, system-level techniques, such as communication based power management and dynamic voltage scaling for interconnects, and network-level techniques, such as error resilient encoding for packetized on-chip communication. Emerging technologies, such as Code Division Multiple Access (CDMA) based buses, and wireless interconnects are also surveyed.","PeriodicalId":167477,"journal":{"name":"Proceedings 2003. Design Automation Conference (IEEE Cat. No.03CH37451)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"165","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2003. Design Automation Conference (IEEE Cat. No.03CH37451)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/775832.776059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 165

Abstract

Interconnects have been shown to be a dominant source of energy consumption in modern day System-on-Chip (SoC) designs. With a large (and growing) number of electronic systems being designed with battery considerations in mind, minimizing the energy consumed in on-chip interconnects becomes crucial. Further, the use of nanometer technologies is making it increasingly important to consider reliability issues during the design of SoC communication architectures. Continued supply voltage scaling has led to decreased noise margins, making interconnects more susceptible to noise sources such as crosstalk, power supply noise, radiation induced defects, etc. The resulting transient faults cause the interconnect to behave as an unreliable transport medium for data signals. Therefore, fault tolerant communication mechanism, such as Automatic Repeat Request (ARQ), Forward Error Correction (FEC), etc., which have been widely used in the networking community, are likely to percolate to the SoC domain. This paper presents a survey of techniques for energy efficient on-chip communication. Techniques operating at different levels of the communication design hierarchy are described, including circuit-level techniques, such as low voltage signaling, architecture-level techniques, such as communication architecture selection and bus isolation, system-level techniques, such as communication based power management and dynamic voltage scaling for interconnects, and network-level techniques, such as error resilient encoding for packetized on-chip communication. Emerging technologies, such as Code Division Multiple Access (CDMA) based buses, and wireless interconnects are also surveyed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
片上高效节能通信技术综述
互连已被证明是现代系统芯片(SoC)设计中能源消耗的主要来源。随着越来越多的电子系统在设计时考虑到电池的问题,最大限度地减少片上互连所消耗的能量变得至关重要。此外,纳米技术的使用使得在设计SoC通信架构时考虑可靠性问题变得越来越重要。持续的电源电压缩放导致噪声裕度降低,使互连更容易受到噪声源的影响,如串扰、电源噪声、辐射诱发缺陷等。由此产生的瞬态故障导致互连充当数据信号的不可靠传输介质。因此,在网络社区中广泛应用的容错通信机制,如自动重复请求(ARQ)、前向纠错(FEC)等,很可能会渗透到SoC领域。本文介绍了一种高效节能的片上通信技术。描述了在通信设计层次的不同层次上操作的技术,包括电路级技术,如低压信号,架构级技术,如通信架构选择和总线隔离,系统级技术,如基于通信的电源管理和互连的动态电压缩放,以及网络级技术,如用于封装片上通信的纠错编码。新兴技术,如码分多址(CDMA)为基础的总线和无线互连也进行了调查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SAT-based unbounded symbolic model checking Self-biased high-bandwidth low-jitter 1-to-4096 multiplier clock generator PLL Design techniques for sensor appliances: foundations and light compass case study Hybrid hierarchical timing closure methodology for a high performance and low power DSP Low-power design methodology for an on-chip with adaptive bandwidth capability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1