Achieving Bilateral Utility Maximization and Location Privacy Preservation in Database-Driven Cognitive Radio Networks

Zhikun Zhang, Heng Zhang, Shibo He, Peng Cheng
{"title":"Achieving Bilateral Utility Maximization and Location Privacy Preservation in Database-Driven Cognitive Radio Networks","authors":"Zhikun Zhang, Heng Zhang, Shibo He, Peng Cheng","doi":"10.1109/MASS.2015.93","DOIUrl":null,"url":null,"abstract":"Database-driven cognitive radio has been well recognized as an efficient way to reduce interference between Primary Users (PUs) and Secondary Users (SUs). In database-driven cognitive radio, PUs and SUs must provide their locations to enable dynamic channel allocation, which raises location privacy breach concern. Previous studies only focus on unilateral privacy preservation, i.e., Only PUs' or SUs' privacy is preserved. In this paper, we propose to protect bilateral location privacy of a PU and an SU. The main challenge lies in how to coordinate the PU and SU to maximize their utility provided that their location privacy is protected. We first introduce a quantitative method to calculate both PU's and SU's location privacy, and then design a novel privacy preserving Utility Maximization protocol (UMax). UMax allows for both PU and SU to adjust their privacy preserving levels and optimize transmit power iteratively to achieve the maximum utility. Through extensive evaluations, we demonstrate that our proposed mechanism can efficiently increase the utility of both PU and SU while preserving their location privacy.","PeriodicalId":436496,"journal":{"name":"2015 IEEE 12th International Conference on Mobile Ad Hoc and Sensor Systems","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 12th International Conference on Mobile Ad Hoc and Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MASS.2015.93","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

Database-driven cognitive radio has been well recognized as an efficient way to reduce interference between Primary Users (PUs) and Secondary Users (SUs). In database-driven cognitive radio, PUs and SUs must provide their locations to enable dynamic channel allocation, which raises location privacy breach concern. Previous studies only focus on unilateral privacy preservation, i.e., Only PUs' or SUs' privacy is preserved. In this paper, we propose to protect bilateral location privacy of a PU and an SU. The main challenge lies in how to coordinate the PU and SU to maximize their utility provided that their location privacy is protected. We first introduce a quantitative method to calculate both PU's and SU's location privacy, and then design a novel privacy preserving Utility Maximization protocol (UMax). UMax allows for both PU and SU to adjust their privacy preserving levels and optimize transmit power iteratively to achieve the maximum utility. Through extensive evaluations, we demonstrate that our proposed mechanism can efficiently increase the utility of both PU and SU while preserving their location privacy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数据库驱动的认知无线网络双边效用最大化与位置隐私保护
数据库驱动的认知无线电是一种有效的减少主用户(pu)和从用户(SUs)之间干扰的方法。在数据库驱动的认知无线电中,pu和su必须提供其位置以实现动态信道分配,这引起了位置隐私泄露问题。以往的研究只关注单方面的隐私保护,即只保护用户或用户的隐私。在本文中,我们提出保护PU和SU的双边位置隐私,主要挑战在于如何协调PU和SU在保护其位置隐私的前提下最大化其效用。首先引入一种定量计算PU和SU位置隐私的方法,然后设计一种新的保护隐私的效用最大化协议(UMax)。UMax允许PU和SU调整其隐私保护级别并迭代优化传输功率,以实现最大效用。通过广泛的评估,我们证明了我们提出的机制可以有效地提高PU和SU的效用,同时保护它们的位置隐私。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic Provisioning for High Energy Efficiency and Resource Utilization in Cloud RANs An Energy Efficient and Restricted Tour Construction for Mobile Sink in Wireless Sensor Networks MQCC: Maximum Queue Congestion Control for Multipath Networks with Blockage Context-Aware Crowd-Sensing in Opportunistic Mobile Social Networks Study of Hadoop-MapReduce on Google N-Gram Datasets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1