Automatic Diagnosing of Infant Hip Dislocation Based on Neural Network

Xiang Yu, Dongyun Lin, Weiyao Lan, Bingan Zhong, Ping Lv
{"title":"Automatic Diagnosing of Infant Hip Dislocation Based on Neural Network","authors":"Xiang Yu, Dongyun Lin, Weiyao Lan, Bingan Zhong, Ping Lv","doi":"10.1145/3285996.3286021","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an automatic diagnosismethod based on neural network to detect the infant hip joint dislocation from its ultrasonic images. The proposed method consists of two procedures including pre-processing of the infant hip joint ultrasonic images and diagnosing via neural network. Pre-processing focuses on extracting regions of interest from the ultrasound images. Then, the extracted result is fed to the trained neural network. Finally, the output of the neural network divides the infant hip into two categories, that is, dislocation or non-dislocation. Experimental results show that our method reaches an accuracy of 97% in total, 100% in specificity and 86% in sensitivitywhich proves that it is capable of clinical detection of infant hip dislocation.","PeriodicalId":287756,"journal":{"name":"International Symposium on Image Computing and Digital Medicine","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Image Computing and Digital Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3285996.3286021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose an automatic diagnosismethod based on neural network to detect the infant hip joint dislocation from its ultrasonic images. The proposed method consists of two procedures including pre-processing of the infant hip joint ultrasonic images and diagnosing via neural network. Pre-processing focuses on extracting regions of interest from the ultrasound images. Then, the extracted result is fed to the trained neural network. Finally, the output of the neural network divides the infant hip into two categories, that is, dislocation or non-dislocation. Experimental results show that our method reaches an accuracy of 97% in total, 100% in specificity and 86% in sensitivitywhich proves that it is capable of clinical detection of infant hip dislocation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经网络的婴儿髋关节脱位自动诊断
本文提出了一种基于神经网络的婴儿髋关节脱位超声图像自动诊断方法。该方法由婴儿髋关节超声图像预处理和神经网络诊断两部分组成。预处理的重点是从超声图像中提取感兴趣的区域。然后,将提取的结果输入到训练好的神经网络中。最后,神经网络的输出将婴儿髋关节分为脱位和非脱位两类。实验结果表明,该方法的总准确率为97%,特异性为100%,敏感性为86%,证明该方法能够临床检测婴儿髋关节脱位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Level Set Framework of Multi Labels Fusion for Multiple Sclerosis Lesion Segmentation Local Gauss Multiplicative Components (LG-MC) Method for MR Image Segmentation Multitask Learning for Pathomorphology Recognition of Squamous Intraepithelial Lesion in Thinprep Cytologic Test A Fast Convexity Preserving Level Set Method for Segmentation of Cardiac Left Ventricle Application of Image Segmentation on Evaluating Infarct Core in Acute Ischemic Stroke Using CT Perfusion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1