Khalid El-Darymli, C. Moloney, E. Gill, Peter F. McGuire, D. Power
{"title":"On circularity/noncircularity in single-channel synthetic aperture radar imagery","authors":"Khalid El-Darymli, C. Moloney, E. Gill, Peter F. McGuire, D. Power","doi":"10.1109/OCEANS.2014.7003163","DOIUrl":null,"url":null,"abstract":"Motivated by the conventional resolution theory, phase content in single-channel synthetic aperture radar (SAR) imagery is often discarded. In this paper, the validity of this practice is studied from the perspective of complex-valued statistics. Hence, for the phase content to be irrelevant, the complex-valued random variable has to be second-order circular. A procedure to characterize circularity/noncircularity in single-channel SAR imagery is presented. Our analysis is applied to real-world SAR chips from Radarsat-2 and MSTAR. For the case of extended targets, the complex-valued SAR chip is found to be inherently noncircular. Further, the strength of noncircularity is observed to be resolution-dependent. Also, a proportional relationship between noncircularity and nonlinearity is noted. These findings warrant investigating the statistical significance of this phenomenon in relevant target recognition applications.","PeriodicalId":368693,"journal":{"name":"2014 Oceans - St. John's","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Oceans - St. John's","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANS.2014.7003163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
Motivated by the conventional resolution theory, phase content in single-channel synthetic aperture radar (SAR) imagery is often discarded. In this paper, the validity of this practice is studied from the perspective of complex-valued statistics. Hence, for the phase content to be irrelevant, the complex-valued random variable has to be second-order circular. A procedure to characterize circularity/noncircularity in single-channel SAR imagery is presented. Our analysis is applied to real-world SAR chips from Radarsat-2 and MSTAR. For the case of extended targets, the complex-valued SAR chip is found to be inherently noncircular. Further, the strength of noncircularity is observed to be resolution-dependent. Also, a proportional relationship between noncircularity and nonlinearity is noted. These findings warrant investigating the statistical significance of this phenomenon in relevant target recognition applications.