Target Tracking using Radar and Image IoT Nodes

Pavlos Tsiantis, Sanil Ahan Purryag, I. Kyriakides
{"title":"Target Tracking using Radar and Image IoT Nodes","authors":"Pavlos Tsiantis, Sanil Ahan Purryag, I. Kyriakides","doi":"10.1109/DCOSS49796.2020.00072","DOIUrl":null,"url":null,"abstract":"The availability of multiple sensing and edge processing capabilities by sensing nodes, that may include radar, image, and acoustic, enables the collection of rich information to improve performance in target tracking. However, the tracking system, that includes a central data fusion center and IoT nodes, needs to extract information from heterogeneous data under constraints of IoT power, processing, and communication rates. This work presents a method for target tracking using image and radar data. The method is able to fuse heterogeneous data and direct agile edge processing of data on board of the sensing IoT nodes. Data fusion and agile edge processing improves tracking performance while reducing processing and communication rates. Simulation-based results, using synthetic radar data and real image data, demonstrate an improved tracking performance when using heterogeneous data versus using a single type of data.","PeriodicalId":198837,"journal":{"name":"2020 16th International Conference on Distributed Computing in Sensor Systems (DCOSS)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 16th International Conference on Distributed Computing in Sensor Systems (DCOSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCOSS49796.2020.00072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The availability of multiple sensing and edge processing capabilities by sensing nodes, that may include radar, image, and acoustic, enables the collection of rich information to improve performance in target tracking. However, the tracking system, that includes a central data fusion center and IoT nodes, needs to extract information from heterogeneous data under constraints of IoT power, processing, and communication rates. This work presents a method for target tracking using image and radar data. The method is able to fuse heterogeneous data and direct agile edge processing of data on board of the sensing IoT nodes. Data fusion and agile edge processing improves tracking performance while reducing processing and communication rates. Simulation-based results, using synthetic radar data and real image data, demonstrate an improved tracking performance when using heterogeneous data versus using a single type of data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用雷达和图像物联网节点进行目标跟踪
传感节点的多种传感和边缘处理能力的可用性,可能包括雷达、图像和声学,能够收集丰富的信息,以提高目标跟踪的性能。然而,跟踪系统包括一个中央数据融合中心和物联网节点,需要在物联网功率、处理和通信速率的约束下从异构数据中提取信息。本文提出了一种利用图像和雷达数据进行目标跟踪的方法。该方法能够融合异构数据,并在传感物联网节点上直接对数据进行敏捷边缘处理。数据融合和敏捷边缘处理提高了跟踪性能,同时降低了处理和通信速率。使用合成雷达数据和真实图像数据的仿真结果表明,与使用单一类型的数据相比,使用异构数据可以提高跟踪性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Health Information Exchange with Blockchain amid Covid-19-like Pandemics Instrumentation for Cooking Pattern Analysis in Peri-Urban Nepal Predictive and Explainable Machine Learning for Industrial Internet of Things Applications Message from the IoTI4 2020 Workshop Chairs An Agnostic Data-Driven Approach to Predict Stoppages of Industrial Packing Machine in Near
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1