Graph model selection using maximum likelihood

Ivona Bezáková, A. Kalai, R. Santhanam
{"title":"Graph model selection using maximum likelihood","authors":"Ivona Bezáková, A. Kalai, R. Santhanam","doi":"10.1145/1143844.1143858","DOIUrl":null,"url":null,"abstract":"In recent years, there has been a proliferation of theoretical graph models, e.g., preferential attachment and small-world models, motivated by real-world graphs such as the Internet topology. To address the natural question of which model is best for a particular data set, we propose a model selection criterion for graph models. Since each model is in fact a probability distribution over graphs, we suggest using Maximum Likelihood to compare graph models and select their parameters. Interestingly, for the case of graph models, computing likelihoods is a difficult algorithmic task. However, we design and implement MCMC algorithms for computing the maximum likelihood for four popular models: a power-law random graph model, a preferential attachment model, a small-world model, and a uniform random graph model. We hope that this novel use of ML will objectify comparisons between graph models.","PeriodicalId":124011,"journal":{"name":"Proceedings of the 23rd international conference on Machine learning","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd international conference on Machine learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1143844.1143858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

Abstract

In recent years, there has been a proliferation of theoretical graph models, e.g., preferential attachment and small-world models, motivated by real-world graphs such as the Internet topology. To address the natural question of which model is best for a particular data set, we propose a model selection criterion for graph models. Since each model is in fact a probability distribution over graphs, we suggest using Maximum Likelihood to compare graph models and select their parameters. Interestingly, for the case of graph models, computing likelihoods is a difficult algorithmic task. However, we design and implement MCMC algorithms for computing the maximum likelihood for four popular models: a power-law random graph model, a preferential attachment model, a small-world model, and a uniform random graph model. We hope that this novel use of ML will objectify comparisons between graph models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
图模型选择使用最大似然
近年来,受Internet拓扑等现实世界图的启发,出现了大量理论图模型,如优先依恋模型和小世界模型。为了解决哪个模型最适合特定数据集的自然问题,我们为图模型提出了一个模型选择标准。由于每个模型实际上是图上的概率分布,我们建议使用最大似然来比较图模型并选择它们的参数。有趣的是,对于图模型来说,计算可能性是一项困难的算法任务。然而,我们设计并实现了MCMC算法,用于计算四种流行模型的最大似然:幂律随机图模型、优先依恋模型、小世界模型和均匀随机图模型。我们希望这种机器学习的新应用将客观化图模型之间的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On a theory of learning with similarity functions Bayesian learning of measurement and structural models Predictive search distributions Data association for topic intensity tracking Feature value acquisition in testing: a sequential batch test algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1