Predicting popularity of online articles using Random Forest regression

R. Shreyas, D. Akshata, B. S. Mahanand, B. Shagun, C. Abhishek
{"title":"Predicting popularity of online articles using Random Forest regression","authors":"R. Shreyas, D. Akshata, B. S. Mahanand, B. Shagun, C. Abhishek","doi":"10.1109/CCIP.2016.7802890","DOIUrl":null,"url":null,"abstract":"Predictive analysis using machine learning has been gaining popularity in recent times. In this paper, the Random Forest regression model is used to predict popularity of articles from the Online News Popularity data set. The performance of the Random Forest model is investigated and compared with other models. Impact of standardization, regularization, correlation, high bias/high variance and feature selection on the learning models are also studied. Results indicate that, the Random Forest approach predicts popular/unpopular articles with an accuracy of 88.8%.","PeriodicalId":354589,"journal":{"name":"2016 Second International Conference on Cognitive Computing and Information Processing (CCIP)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Second International Conference on Cognitive Computing and Information Processing (CCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCIP.2016.7802890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Predictive analysis using machine learning has been gaining popularity in recent times. In this paper, the Random Forest regression model is used to predict popularity of articles from the Online News Popularity data set. The performance of the Random Forest model is investigated and compared with other models. Impact of standardization, regularization, correlation, high bias/high variance and feature selection on the learning models are also studied. Results indicate that, the Random Forest approach predicts popular/unpopular articles with an accuracy of 88.8%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用随机森林回归预测网络文章的受欢迎程度
近年来,使用机器学习的预测分析越来越受欢迎。本文采用随机森林回归模型对在线新闻流行度数据集中文章的流行度进行预测。研究了随机森林模型的性能,并与其他模型进行了比较。研究了标准化、正则化、相关性、高偏差/高方差和特征选择对学习模型的影响。结果表明,随机森林方法预测流行/不流行文章的准确率为88.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hilbert Huang transform based speech recognition An Integrated curvature and Convex Hull based concave point detection in Histopathological images Study of Complex-valued Learning algorithms for Post-surgery survival prediction Optimized Radial Basis Function Neural Network model for wind power prediction Early detection of grapes diseases using machine learning and IoT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1