A Knowledge Discovery Method to Predict the Economical Sustainability of a Company

D. D. Vos, H. Landeghem, K. V. Hoof
{"title":"A Knowledge Discovery Method to Predict the Economical Sustainability of a Company","authors":"D. D. Vos, H. Landeghem, K. V. Hoof","doi":"10.1177/1063293X06072616","DOIUrl":null,"url":null,"abstract":"In this study, we are building a prototype of a machine-learning system using an inductive supervised approach to predict the logistical performance of a company. Focus lies on the learning phase, the handling of different types of data, the creation of new concepts in order to provide better measurable information. In this system, numeric financial data are combined with categorical data creating symbolic data, distinguishing the phase of model generation from examples, and the phase of model classification and interpretation. The system has been implemented in vector spaces. Our data are benchmarking surveys on concurrent engineering (CE), measuring the usage of in total 302 best practices in Belgian manufacturing companies. The general purpose for implementing a best practice is the statement that the company will improve its product processing, and that in this way the company will establish its economical existence on the market. Our model processes a limited number of predefined steps, generating va...","PeriodicalId":431858,"journal":{"name":"Concurr. Eng. Res. Appl.","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concurr. Eng. Res. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1063293X06072616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this study, we are building a prototype of a machine-learning system using an inductive supervised approach to predict the logistical performance of a company. Focus lies on the learning phase, the handling of different types of data, the creation of new concepts in order to provide better measurable information. In this system, numeric financial data are combined with categorical data creating symbolic data, distinguishing the phase of model generation from examples, and the phase of model classification and interpretation. The system has been implemented in vector spaces. Our data are benchmarking surveys on concurrent engineering (CE), measuring the usage of in total 302 best practices in Belgian manufacturing companies. The general purpose for implementing a best practice is the statement that the company will improve its product processing, and that in this way the company will establish its economical existence on the market. Our model processes a limited number of predefined steps, generating va...
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测公司经济可持续性的知识发现方法
在这项研究中,我们正在构建一个机器学习系统的原型,该系统使用归纳监督方法来预测公司的物流绩效。重点在于学习阶段,处理不同类型的数据,创造新的概念,以提供更好的可测量信息。在该系统中,数值金融数据与分类数据相结合,形成符号数据,区分了模型生成阶段和示例阶段,以及模型分类和解释阶段。该系统已在向量空间中实现。我们的数据是对并行工程(CE)的基准调查,测量了比利时制造公司总共302个最佳实践的使用情况。实施最佳实践的一般目的是声明公司将改进其产品加工,并且通过这种方式公司将在市场上建立其经济存在。我们的模型处理有限数量的预定义步骤,生成va…
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Phased array ultrasonic test signal enhancement and classification using Empirical Wavelet Transform and Deep Convolution Neural Network A Knowledge Discovery Method to Predict the Economical Sustainability of a Company Editorial: The Promising Area of Cooperative Internet Computing Performance analysis of machine learning algorithms in heart disease prediction System Design Optimization for Product Manufacturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1