The Training Selection Method for Short-Term Prediction Electricity Loads with Criteria of Informativeness and Compactness

V. Potapov, R. Khamitov, V. Makarov, A. Gritsay, A. Florensov, Denis Tyunkov
{"title":"The Training Selection Method for Short-Term Prediction Electricity Loads with Criteria of Informativeness and Compactness","authors":"V. Potapov, R. Khamitov, V. Makarov, A. Gritsay, A. Florensov, Denis Tyunkov","doi":"10.1109/DYNAMICS.2018.8601454","DOIUrl":null,"url":null,"abstract":"The paper considers the method of forming a training sample for intelligent methods of predicting electricity loads based on artificial neural networks. The training sample is formed taking into account the criteria of informativeness and compactness. It is shown how much the accuracy of the forecast can be increased with the approach used.","PeriodicalId":394567,"journal":{"name":"2018 Dynamics of Systems, Mechanisms and Machines (Dynamics)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Dynamics of Systems, Mechanisms and Machines (Dynamics)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DYNAMICS.2018.8601454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The paper considers the method of forming a training sample for intelligent methods of predicting electricity loads based on artificial neural networks. The training sample is formed taking into account the criteria of informativeness and compactness. It is shown how much the accuracy of the forecast can be increased with the approach used.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于信息量和紧凑性的短期电力负荷预测训练选择方法
本文研究了基于人工神经网络的电力负荷智能预测方法训练样本的形成方法。训练样本的形成考虑了信息量和紧凑性的标准。结果表明,采用这种方法可以提高预报的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development and Investigation of a Computer Model of a Synchronous-in-phase Electric Drive Error Correction of Transmission of Binary Information Detection of Extended Objects in Conditions of a Priori Uncertainty About the Parameters of Movement on the Background of Non-Gaussian Noise Comparative Analysis of Control Methods for Walking Robots with Nonlinear Sensors Perspective Neural Network Algorithms for Dynamic Biometric Pattern Recognition in the Space of Interdependent Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1