{"title":"A predicate-aware modulo scheduling for improving resource efficiency of coarse grained reconfigurable architectures","authors":"J. Jiang, Kuen-Cheng Chiang, J. Shann","doi":"10.1109/SIES.2012.6356604","DOIUrl":null,"url":null,"abstract":"A coarse-grain reconfigurable architecture is an important technology for exploiting the parallelism of a program without compromise of the flexibility and has been adopted for high-performance embedded systems. However, the utilization of hardware resources may be limited by a large number of conditional executed operations. This paper represents a predicate-aware modulo scheduling which may map disjoint operations into the same processing element to reduce the requirements of hardware resources. Moreover, a weighted mapping decision algorithm has also been proposed to improve the execution performance for reconfigurable architecture. Our experimental results indicate that the initiation interval of a loop of the selected benchmarks may be reduced by 12% to 25.2% compared with a related work.","PeriodicalId":219258,"journal":{"name":"7th IEEE International Symposium on Industrial Embedded Systems (SIES'12)","volume":"215 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th IEEE International Symposium on Industrial Embedded Systems (SIES'12)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIES.2012.6356604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A coarse-grain reconfigurable architecture is an important technology for exploiting the parallelism of a program without compromise of the flexibility and has been adopted for high-performance embedded systems. However, the utilization of hardware resources may be limited by a large number of conditional executed operations. This paper represents a predicate-aware modulo scheduling which may map disjoint operations into the same processing element to reduce the requirements of hardware resources. Moreover, a weighted mapping decision algorithm has also been proposed to improve the execution performance for reconfigurable architecture. Our experimental results indicate that the initiation interval of a loop of the selected benchmarks may be reduced by 12% to 25.2% compared with a related work.