A Self Learning System for Emotion Awareness and Adaptation in Humanoid Robots

Sudhir Shenoy, Yusheng Jiang, Tyler Lynch, Lauren Isabelle Manuel, Afsaneh Doryab
{"title":"A Self Learning System for Emotion Awareness and Adaptation in Humanoid Robots","authors":"Sudhir Shenoy, Yusheng Jiang, Tyler Lynch, Lauren Isabelle Manuel, Afsaneh Doryab","doi":"10.1109/RO-MAN53752.2022.9900581","DOIUrl":null,"url":null,"abstract":"Humanoid robots provide a unique opportunity for personalized interaction using emotion recognition. However, emotion recognition performed by humanoid robots in complex social interactions is limited in the flexibility of interaction as well as personalization and adaptation in the responses. We designed an adaptive learning system for real-time emotion recognition that elicits its own ground-truth data and updates individualized models to improve performance over time. A Convolutional Neural Network based on off-the-shelf ResNet50 and Inception v3 are assembled to form an ensemble model which is used for real-time emotion recognition through facial expression. Two sets of robot behaviors, general and personalized, are developed to evoke different emotion responses. The personalized behaviors are adapted based on user preferences collected through a pre-test survey. The performance of the proposed system is verified through a 2-stage user study and tested for the accuracy of the self-supervised retraining. We also evaluate the effectiveness of the personalized behavior of the robot in evoking intended emotions between stages using trust, empathy and engagement scales. The participants are divided into two groups based on their familiarity and previous interactions with the robot. The results of emotion recognition indicate a 12% increase in the F1 score for 7 emotions in stage 2 compared to pre-trained model. Higher mean scores for trust, engagement, and empathy are observed in both participant groups. The average similarity score for both stages was 82% and the average success rate of eliciting the intended emotion increased by 8.28% between stages, despite their differences in familiarity thus offering a way to mitigate novelty effect patterns among user interactions.","PeriodicalId":250997,"journal":{"name":"2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RO-MAN53752.2022.9900581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Humanoid robots provide a unique opportunity for personalized interaction using emotion recognition. However, emotion recognition performed by humanoid robots in complex social interactions is limited in the flexibility of interaction as well as personalization and adaptation in the responses. We designed an adaptive learning system for real-time emotion recognition that elicits its own ground-truth data and updates individualized models to improve performance over time. A Convolutional Neural Network based on off-the-shelf ResNet50 and Inception v3 are assembled to form an ensemble model which is used for real-time emotion recognition through facial expression. Two sets of robot behaviors, general and personalized, are developed to evoke different emotion responses. The personalized behaviors are adapted based on user preferences collected through a pre-test survey. The performance of the proposed system is verified through a 2-stage user study and tested for the accuracy of the self-supervised retraining. We also evaluate the effectiveness of the personalized behavior of the robot in evoking intended emotions between stages using trust, empathy and engagement scales. The participants are divided into two groups based on their familiarity and previous interactions with the robot. The results of emotion recognition indicate a 12% increase in the F1 score for 7 emotions in stage 2 compared to pre-trained model. Higher mean scores for trust, engagement, and empathy are observed in both participant groups. The average similarity score for both stages was 82% and the average success rate of eliciting the intended emotion increased by 8.28% between stages, despite their differences in familiarity thus offering a way to mitigate novelty effect patterns among user interactions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
仿人机器人情感感知与适应的自学习系统
人形机器人为使用情感识别进行个性化交互提供了独特的机会。然而,在复杂的社会互动中,类人机器人的情感识别在互动的灵活性以及响应的个性化和适应性方面受到限制。我们设计了一个用于实时情绪识别的自适应学习系统,该系统可以提取自己的基本事实数据并更新个性化模型,以随着时间的推移提高性能。将基于现成的ResNet50和Inception v3的卷积神经网络组装成一个集成模型,用于通过面部表情进行实时情绪识别。两套机器人行为,一般和个性化,开发唤起不同的情绪反应。个性化的行为是根据通过测试前调查收集的用户偏好进行调整的。通过两阶段的用户研究验证了所提出系统的性能,并测试了自监督再训练的准确性。我们还使用信任、同理心和参与量表评估了机器人的个性化行为在唤起阶段之间预期情绪方面的有效性。参与者根据他们对机器人的熟悉程度和之前与机器人的互动情况分为两组。情绪识别结果表明,与预训练模型相比,第二阶段7种情绪的F1得分提高了12%。在两组参与者中,信任、参与和共情的平均得分都较高。这两个阶段的平均相似度得分为82%,而激发预期情绪的平均成功率在两个阶段之间增加了8.28%,尽管它们在熟悉度上存在差异,因此提供了一种减轻用户交互中的新颖性效应模式的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
I Can’t Believe That Happened! : Exploring Expressivity in Collaborative Storytelling with the Tabletop Robot Haru Nothing About Us Without Us: a participatory design for an Inclusive Signing Tiago Robot Preliminary Investigation of Collision Risk Assessment with Vision for Selecting Targets Paid Attention to by Mobile Robot Step-by-Step Task Plan Explanations Beyond Causal Links Contributions of user tests in a Living Lab in the co-design process of human robot interaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1