A stochastic method for finding the min-max optimal solution of multiple objectives

Yan Tian, Jiang-ling Hao, Li Erxue
{"title":"A stochastic method for finding the min-max optimal solution of multiple objectives","authors":"Yan Tian, Jiang-ling Hao, Li Erxue","doi":"10.1109/ICEMS.2001.971871","DOIUrl":null,"url":null,"abstract":"A tabu based algorithm for finding the minmax optimal of multi-objective optimal design problems is proposed. A min-max optimal in multi-objective optimizations is that with the smallest relative increments of all the objective functions. Contrary to other methods used for multi-objective optimizations in electromagnetic device designs, the proposed one requires no scalarization techniques, thus simplifying the numerical implementations considerably. Numerical examples on both test and practical problems are presented to validate the proposed algorithm.","PeriodicalId":143007,"journal":{"name":"ICEMS'2001. Proceedings of the Fifth International Conference on Electrical Machines and Systems (IEEE Cat. No.01EX501)","volume":"233 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICEMS'2001. Proceedings of the Fifth International Conference on Electrical Machines and Systems (IEEE Cat. No.01EX501)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEMS.2001.971871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A tabu based algorithm for finding the minmax optimal of multi-objective optimal design problems is proposed. A min-max optimal in multi-objective optimizations is that with the smallest relative increments of all the objective functions. Contrary to other methods used for multi-objective optimizations in electromagnetic device designs, the proposed one requires no scalarization techniques, thus simplifying the numerical implementations considerably. Numerical examples on both test and practical problems are presented to validate the proposed algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种求多目标最小-最大最优解的随机方法
提出了一种基于禁忌的多目标优化设计问题的最小最大优化算法。多目标优化中的最小-最大优化是指所有目标函数的相对增量最小。与电磁器件设计中用于多目标优化的其他方法相反,该方法不需要标量化技术,从而大大简化了数值实现。给出了测试和实际问题的数值算例,验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design principles of magnetically controlled reactor The mathematical model and field-oriented control for 15-phase brushless direct current motor with an opened phase A novel starting method for the sensorless salient-pole brushless DC motors Field-circuit optimum combination for permanent magnet machine design and analysis Design and research on variable-frequency speed-regulating electric power dynamometer motor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1