Epilepsy detection using Detrended Fluctuation Analysis

R. Shalbaf, P. T. Hosseini, M. Analoui
{"title":"Epilepsy detection using Detrended Fluctuation Analysis","authors":"R. Shalbaf, P. T. Hosseini, M. Analoui","doi":"10.1109/ICWAPR.2009.5207454","DOIUrl":null,"url":null,"abstract":"Epilepsy is a disorder of the central nervous system characterized by the loss of consciousness and convulsions. If some early warning signal of an upcoming seizure (diagnosis of preictal period) could be detected, proper treatment could be applied to the patient to help prevent the seizure. In this articles, Detrended Fluctuation Analysis (DFA) has been introduced and used to extract the DFA feature from EEG signal. DFA is a scaling analysis method that provides a simple quantitative parameter to represent the correlation properties of a signal, we come to 100% separation of Normal, Preictal, and Ictal states of the brain.","PeriodicalId":424264,"journal":{"name":"2009 International Conference on Wavelet Analysis and Pattern Recognition","volume":"185 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Wavelet Analysis and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWAPR.2009.5207454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Epilepsy is a disorder of the central nervous system characterized by the loss of consciousness and convulsions. If some early warning signal of an upcoming seizure (diagnosis of preictal period) could be detected, proper treatment could be applied to the patient to help prevent the seizure. In this articles, Detrended Fluctuation Analysis (DFA) has been introduced and used to extract the DFA feature from EEG signal. DFA is a scaling analysis method that provides a simple quantitative parameter to represent the correlation properties of a signal, we come to 100% separation of Normal, Preictal, and Ictal states of the brain.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用去趋势波动分析检测癫痫
癫痫是一种中枢神经系统紊乱,其特征是意识丧失和抽搐。如果可以检测到即将发作的一些早期预警信号(先期诊断),可以对患者进行适当的治疗以帮助预防发作。本文引入去趋势波动分析(DFA),并将其用于提取脑电信号的去趋势波动特征。DFA是一种缩放分析方法,它提供了一个简单的定量参数来表示信号的相关属性,我们可以100%分离大脑的正常,预测和临界状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of Laplacian Support Vector Machines Intelligent computerized fabric texture recognition system by using Grey-based neural fuzzy clustering A new cooperative algorithm for signal detection Improved algorithm of the Back Propagation neural network and its application in fault diagnosis of air-cooling condenser HSICT: A method for romoving highlight and shading in color image
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1