Nonasymptotic Analysis of Direct-Augmentation ESPRIT for Localization of More Sources Than Sensors Using Sparse Arrays

Zai Yang, Kai Wang
{"title":"Nonasymptotic Analysis of Direct-Augmentation ESPRIT for Localization of More Sources Than Sensors Using Sparse Arrays","authors":"Zai Yang, Kai Wang","doi":"10.1109/SSP53291.2023.10207996","DOIUrl":null,"url":null,"abstract":"Direction augmentation (DA), followed by a subspace method such as MUSIC or ESPRIT, is a successful approach that enables localization of more uncorrelated sources than sensors with a proper sparse linear array. In this paper, we carry out a nonasymptotic performance analysis of DA-ESPRIT in the practical scenario with finitely many snapshots. We show that more uncorrelated sources than sensors are guaranteed, with overwhelming probability, to be localized using DA-ESPRIT if the number of snapshots is greater than an explicit, problem-dependent threshold. Our result does not require a fixed source separation condition, which makes it unique among existing results. Numerical results corroborating our analysis are provided.","PeriodicalId":296346,"journal":{"name":"2023 IEEE Statistical Signal Processing Workshop (SSP)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP53291.2023.10207996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Direction augmentation (DA), followed by a subspace method such as MUSIC or ESPRIT, is a successful approach that enables localization of more uncorrelated sources than sensors with a proper sparse linear array. In this paper, we carry out a nonasymptotic performance analysis of DA-ESPRIT in the practical scenario with finitely many snapshots. We show that more uncorrelated sources than sensors are guaranteed, with overwhelming probability, to be localized using DA-ESPRIT if the number of snapshots is greater than an explicit, problem-dependent threshold. Our result does not require a fixed source separation condition, which makes it unique among existing results. Numerical results corroborating our analysis are provided.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用稀疏阵列对多于传感器的来源进行定位的直接增强 ESPRIT 非渐近分析
与使用适当稀疏线性阵列的传感器相比,使用方向增强(DA)和子空间方法(如 MUSIC 或 ESPRIT)可以定位更多不相关的信号源,是一种成功的方法。在本文中,我们对具有有限多个快照的实际场景中的 DA-ESPRIT 进行了非渐近性能分析。我们的研究表明,如果快照数量大于一个明确的、与问题相关的阈值,那么使用 DA-ESPRIT 可以保证以压倒性的概率定位到比传感器更多的不相关源。我们的结果不需要固定的源分离条件,这使得它在现有结果中独一无二。我们提供的数值结果证实了我们的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultra Low Delay Audio Source Separation Using Zeroth-Order Optimization Joint Channel Estimation and Symbol Detection in Overloaded MIMO Using ADMM Performance Analysis and Deep Learning Evaluation of URLLC Full-Duplex Energy Harvesting IoT Networks over Nakagami-m Fading Channels Accelerated Magnetic Resonance Parameter Mapping With Low-Rank Modeling and Deep Generative Priors Physical Characteristics Estimation for Irregularly Shaped Fruit Using Two Cameras
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1