Particle swarm optimization identification of IPMC actuator using fuzzy NARX model

H. Anh
{"title":"Particle swarm optimization identification of IPMC actuator using fuzzy NARX model","authors":"H. Anh","doi":"10.1109/ICCIS.2010.5518573","DOIUrl":null,"url":null,"abstract":"In this paper, a novel inverse fuzzy NARX model is used for modeling and identifying the IPMC-based actuator's inverse dynamic model. The highly nonlinear features of the IPMC-based actuator are thoroughly modeled based on the inverse fuzzy NARX model-based identification process using experimental input-output training data. This paper proposes the novel use of a modified particle swarm optimization (MPSO) to generate the inverse fuzzy NARX (IFN) model for a highly nonlinear IPMC actuator system. The results show that the novel inverse fuzzy NARX model optimized by MPSO yields outstanding performance and perfect accuracy.","PeriodicalId":445473,"journal":{"name":"2010 IEEE Conference on Cybernetics and Intelligent Systems","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Conference on Cybernetics and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIS.2010.5518573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, a novel inverse fuzzy NARX model is used for modeling and identifying the IPMC-based actuator's inverse dynamic model. The highly nonlinear features of the IPMC-based actuator are thoroughly modeled based on the inverse fuzzy NARX model-based identification process using experimental input-output training data. This paper proposes the novel use of a modified particle swarm optimization (MPSO) to generate the inverse fuzzy NARX (IFN) model for a highly nonlinear IPMC actuator system. The results show that the novel inverse fuzzy NARX model optimized by MPSO yields outstanding performance and perfect accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模糊NARX模型的IPMC执行器粒子群优化辨识
本文采用一种新的逆模糊NARX模型对基于ipmc的执行器的逆动力学模型进行建模和辨识。利用实验输入输出训练数据,采用基于逆模糊NARX模型的辨识过程,对基于ipmc的执行器的高度非线性特征进行了全面建模。针对高度非线性的IPMC作动器系统,提出了一种新的改进粒子群算法(MPSO)来生成逆模糊NARX (IFN)模型。结果表明,经MPSO优化的新型逆模糊NARX模型具有优异的性能和较好的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic shift mechanism of continuous attractors in a class of recurrent neural networks Design space exploration of a 2-D DWT system architecture Cascaded control of 3D path following for an unmanned helicopter A load transfer scheme of radial distribution feeders considering distributed generation FDI of disturbed nonlinear systems: A nonlinear UIO approach with SOS techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1