{"title":"On the reserved sub-carrier approach to achieving N-continuity for side-lobe reduction in OFDM","authors":"Jesse Haber-Kucharsky, E. Alian, P. Mitran","doi":"10.1109/CWIT.2013.6621622","DOIUrl":null,"url":null,"abstract":"Orthogonal frequency division multiplexing (OFDM) is a popular modulation scheme used in a variety of applications. One significant problem associated with OFDM is the possibility of large side-lobes in its spectrum. In this paper, we consider the so-called N-continuous method for reducing the side-lobes. We first consider one implementation approach, whereby certain sub-carriers are reserved for the purpose of adjusting the spectrum of an OFDM symbol. We find that significant side-lobe reduction is possible, although at the cost of injecting very large power in the reserved sub-carriers that results in unacceptable spectrum overshoot. In order to achieve reasonable power levels, at least 20% of all sub-carriers must be reserved for weighting. As a solution to the problem of spectrum overshoot, we propose an alternative approach whereby the power of the reserved sub-carriers is constrained. Numerical results show that reasonable power levels are achieved at the cost of significant performance loss in the N-continuous OFDM technique for side-lobe reduction. We thus find that the performance cost of eliminating the spectrum overshoot reduces the side-lobes reduction to less than 5 dB in cases of interest.","PeriodicalId":398936,"journal":{"name":"2013 13th Canadian Workshop on Information Theory","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 13th Canadian Workshop on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CWIT.2013.6621622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Orthogonal frequency division multiplexing (OFDM) is a popular modulation scheme used in a variety of applications. One significant problem associated with OFDM is the possibility of large side-lobes in its spectrum. In this paper, we consider the so-called N-continuous method for reducing the side-lobes. We first consider one implementation approach, whereby certain sub-carriers are reserved for the purpose of adjusting the spectrum of an OFDM symbol. We find that significant side-lobe reduction is possible, although at the cost of injecting very large power in the reserved sub-carriers that results in unacceptable spectrum overshoot. In order to achieve reasonable power levels, at least 20% of all sub-carriers must be reserved for weighting. As a solution to the problem of spectrum overshoot, we propose an alternative approach whereby the power of the reserved sub-carriers is constrained. Numerical results show that reasonable power levels are achieved at the cost of significant performance loss in the N-continuous OFDM technique for side-lobe reduction. We thus find that the performance cost of eliminating the spectrum overshoot reduces the side-lobes reduction to less than 5 dB in cases of interest.