Towards the Optimization of Road Side Unit Placement Using Genetic Algorithm

Mahmoud Al Shareeda, Ayman Khalil, W. Fahs
{"title":"Towards the Optimization of Road Side Unit Placement Using Genetic Algorithm","authors":"Mahmoud Al Shareeda, Ayman Khalil, W. Fahs","doi":"10.1109/ACIT.2018.8672687","DOIUrl":null,"url":null,"abstract":"The most significant elements of a vehicular ad hoc network (VANET), besides VANET-enabled vehicles, are roadside units (RSUs). The effectiveness of a VANET mainly depends on the density and location of these RSUs. Throughout the primary stages of VANET, it will not be potential to deploy a big number of RSUs either due to the low marketplace penetration of VANET enabled vehicles or due to the deployment price of RSUs. There is, therefore, a need to optimally place a limited number of RSUs in a specified area in order to accomplish maximum performance. In this paper, we present the well-known genetic algorithm based on RSU location to find an optimal or near optimal solution. We provide the basic simulation environment of this work OSM to download real map data, GatcomSUMO to generate car mobility, SUMO to simulate road traffic, veins model framework for running vehicular network simulations on Omnet++, Omnet++ to simulate realistic network and Matlab to build the algorithm in order to analyze the results. The simulation scenario is based on the Hamra district of Beirut, Lebanon. Based on the genetic algorithm, our proposed RSU placement model demonstrates that an optimal RSU position that can enhance the reception of basic safety message (BSM) delivered from the vehicles, can be accomplished in a specified road-map layout.","PeriodicalId":443170,"journal":{"name":"2018 International Arab Conference on Information Technology (ACIT)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Arab Conference on Information Technology (ACIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACIT.2018.8672687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

The most significant elements of a vehicular ad hoc network (VANET), besides VANET-enabled vehicles, are roadside units (RSUs). The effectiveness of a VANET mainly depends on the density and location of these RSUs. Throughout the primary stages of VANET, it will not be potential to deploy a big number of RSUs either due to the low marketplace penetration of VANET enabled vehicles or due to the deployment price of RSUs. There is, therefore, a need to optimally place a limited number of RSUs in a specified area in order to accomplish maximum performance. In this paper, we present the well-known genetic algorithm based on RSU location to find an optimal or near optimal solution. We provide the basic simulation environment of this work OSM to download real map data, GatcomSUMO to generate car mobility, SUMO to simulate road traffic, veins model framework for running vehicular network simulations on Omnet++, Omnet++ to simulate realistic network and Matlab to build the algorithm in order to analyze the results. The simulation scenario is based on the Hamra district of Beirut, Lebanon. Based on the genetic algorithm, our proposed RSU placement model demonstrates that an optimal RSU position that can enhance the reception of basic safety message (BSM) delivered from the vehicles, can be accomplished in a specified road-map layout.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于遗传算法的路边单元布局优化研究
除了支持VANET的车辆外,车辆自组织网络(VANET)中最重要的元素是路边单元(rsu)。VANET的有效性主要取决于这些rsu的密度和位置。在VANET的初级阶段,由于支持VANET的车辆的市场渗透率较低,或者由于rsu的部署价格,部署大量rsu的可能性不大。因此,需要在指定区域最佳地放置有限数量的rsu,以实现最大性能。在本文中,我们提出了一种著名的基于RSU定位的遗传算法来寻找最优或近最优解。我们提供了本工作的基础仿真环境OSM下载真实地图数据,GatcomSUMO生成汽车机动性,SUMO模拟道路交通,在omnet++上运行车辆网络仿真的脉络模型框架,omnet++模拟现实网络,Matlab构建算法并对结果进行分析。模拟场景以黎巴嫩贝鲁特的哈姆拉地区为基础。基于遗传算法,我们提出的RSU位置模型表明,在指定的路线图布局中,可以实现最优的RSU位置,以增强车辆传递的基本安全信息(BSM)的接收。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Feature Selection for Android Keystroke Dynamics Proposed Method for Automatic Segmentation of Medical Images Feature-Based Opinion Summarization for Arabic Reviews Arabic Semantic Similarity Approaches - Review IoT: Architecture, Challenges, and Solutions Using Fog Network and Application Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1