{"title":"Proactive Mobility Management of UEs Using Sequence-to-Sequence Modeling","authors":"V. Yajnanarayana","doi":"10.1109/NCC55593.2022.9806726","DOIUrl":null,"url":null,"abstract":"Beyond 5G networks will operate at high frequencies with wide bandwidths. This brings both opportunities and challenges. Opportunities include high throughput connectivity with low latency. However, one of the main challenges in these networks is due to the high path loss at these operating frequencies, which requires network to be deployed densely to provide coverage. Since these cells have small inter-site-distance (ISD), the dwell-time of the UEs in these cells are small, thus supporting mobility in these types of dense networks is a challenge and require frequent beam or cell reassignments. A pro-active mobility management scheme which exploits the historical trajectories can provide better prediction of cells and beams as UEs move in the coverage area. We propose an AI based method using sequence-to-sequence modeling for the estimation of handover cells/beams along with dwell-time using the trajectory information of the UE. Results indicate that for a dense deployment, an accuracy of more than 90 percent can be achieved for handover cell estimation and very low mean absolute error (MAE) for dwell-time.","PeriodicalId":403870,"journal":{"name":"2022 National Conference on Communications (NCC)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC55593.2022.9806726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Beyond 5G networks will operate at high frequencies with wide bandwidths. This brings both opportunities and challenges. Opportunities include high throughput connectivity with low latency. However, one of the main challenges in these networks is due to the high path loss at these operating frequencies, which requires network to be deployed densely to provide coverage. Since these cells have small inter-site-distance (ISD), the dwell-time of the UEs in these cells are small, thus supporting mobility in these types of dense networks is a challenge and require frequent beam or cell reassignments. A pro-active mobility management scheme which exploits the historical trajectories can provide better prediction of cells and beams as UEs move in the coverage area. We propose an AI based method using sequence-to-sequence modeling for the estimation of handover cells/beams along with dwell-time using the trajectory information of the UE. Results indicate that for a dense deployment, an accuracy of more than 90 percent can be achieved for handover cell estimation and very low mean absolute error (MAE) for dwell-time.