Synthesis of intelligent antenna array using radial basis function networks

M. Sarevska, B. Milovanovic, Z. Stanković
{"title":"Synthesis of intelligent antenna array using radial basis function networks","authors":"M. Sarevska, B. Milovanovic, Z. Stanković","doi":"10.1109/TELSKS.2013.6704432","DOIUrl":null,"url":null,"abstract":"This paper considers antenna array synthesis for linear amplitude and phase distribution of the element excitations. Following the concept of human brain, large number of neurons is assumed and radial basis neural network with exact solution is used. Detailed analyze of performances are presented for different values of the number of training samples and different number of antenna elements. First regular antenna array is presented and then the investigation is broadened to linear amplitude distribution. A small mean error of the amplitude and phase at the output of the network are concluded, showing the ability of the network to perform the synthesis. This analyze is strong basis for guidance in a future synthesis of a more irregular antenna array.","PeriodicalId":144044,"journal":{"name":"2013 11th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Services (TELSIKS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 11th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Services (TELSIKS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TELSKS.2013.6704432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper considers antenna array synthesis for linear amplitude and phase distribution of the element excitations. Following the concept of human brain, large number of neurons is assumed and radial basis neural network with exact solution is used. Detailed analyze of performances are presented for different values of the number of training samples and different number of antenna elements. First regular antenna array is presented and then the investigation is broadened to linear amplitude distribution. A small mean error of the amplitude and phase at the output of the network are concluded, showing the ability of the network to perform the synthesis. This analyze is strong basis for guidance in a future synthesis of a more irregular antenna array.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于径向基函数网络的智能天线阵综合
本文考虑了单元激励的线性幅值和相位分布的天线阵列合成。根据人脑的概念,假设有大量的神经元,采用具有精确解的径向基神经网络。对不同的训练样本数和不同的天线单元数的性能进行了详细分析。首先提出了规则天线阵,然后将研究范围扩大到线性振幅分布。网络输出的幅值和相位均有较小的平均误差,显示了网络进行综合的能力。这一分析为今后更不规则天线阵的综合提供了有力的指导依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Technical program committee A bidirectional moving field inductive power transfer system for electric vehicles Dynamic REM towards flexible spectrum management Artificial Neural Networks for ranging of passive UHF RFID tags Prediction and measurement of electromagnetic radiation at Krajina square in the city of Banja Luka
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1