Capacitive micromachined ultrasonic transducer as a resonant temperature sensor

Zhikang Li, Libo Zhao, Zhiying Ye, Hongyan Wang, Yulong Zhao, Zhuangde Jiang
{"title":"Capacitive micromachined ultrasonic transducer as a resonant temperature sensor","authors":"Zhikang Li, Libo Zhao, Zhiying Ye, Hongyan Wang, Yulong Zhao, Zhuangde Jiang","doi":"10.1109/NEMS.2013.6559912","DOIUrl":null,"url":null,"abstract":"The capacitive ultrasonic transducer (CMUT) was initially proposed for temperature measurement. A simple CMUT structure and the corresponding matching circuits were designed. Then the effects of vibration modes and bias voltage on sensitivity were analyzed by the finite element method. The results showed that the resonant frequency varied almost linearly with the temperature over the range of 45 °C to 120 °C, and the sensitivity and the nonlinear error were about -1931.6ppm/°C (or -21.2 kHz /°C) and 1.33% respectively when the CMUT working at the first order vibration mode with a bias voltage of 22.05V. It was demonstrated that the first order vibration mode had a higher sensitivity than the other three higher modes and the sensitivity could be adjusted by the bias voltage.","PeriodicalId":308928,"journal":{"name":"The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS.2013.6559912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The capacitive ultrasonic transducer (CMUT) was initially proposed for temperature measurement. A simple CMUT structure and the corresponding matching circuits were designed. Then the effects of vibration modes and bias voltage on sensitivity were analyzed by the finite element method. The results showed that the resonant frequency varied almost linearly with the temperature over the range of 45 °C to 120 °C, and the sensitivity and the nonlinear error were about -1931.6ppm/°C (or -21.2 kHz /°C) and 1.33% respectively when the CMUT working at the first order vibration mode with a bias voltage of 22.05V. It was demonstrated that the first order vibration mode had a higher sensitivity than the other three higher modes and the sensitivity could be adjusted by the bias voltage.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电容式微机械超声换能器作为谐振式温度传感器
电容式超声换能器(CMUT)最初被提出用于温度测量。设计了一种简单的CMUT结构和相应的匹配电路。然后用有限元法分析了振动模态和偏置电压对灵敏度的影响。结果表明,在45℃~ 120℃范围内,谐振频率随温度的变化几乎呈线性变化,当CMUT工作在一阶振动模式下,偏置电压为22.05V时,灵敏度约为-1931.6ppm/°C(或-21.2 kHz /°C),非线性误差约为1.33%。结果表明,一阶振动模态比其他三阶振动模态具有更高的灵敏度,且灵敏度可以通过偏置电压调节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A nanometer-resolution displacement measurement system based on laser feedback interferometry Focusing reflector and lens with non-periodic phase-matched subwavelength high contrast grating Synthesis and size control of nano/submicron copper particles by feeding strategies Low-cost rapid prototyping of flexible plastic paper based microfluidic devices Cooling stimulation on cerebral cortex for epilepsy suppression with integration of micro-invasive electrodes and TE coolers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1