An effective unscented Kalman filter for state estimation of a gyro-free inertial measurement unit

Chaojun Liu, Shuai Yu, Shengzhi Zhang, Xuebing Yuan, Sheng Liu
{"title":"An effective unscented Kalman filter for state estimation of a gyro-free inertial measurement unit","authors":"Chaojun Liu, Shuai Yu, Shengzhi Zhang, Xuebing Yuan, Sheng Liu","doi":"10.1109/PLANS.2014.6851380","DOIUrl":null,"url":null,"abstract":"This study reports a gyro-free inertial measurement unit (IMU) using solely four triaxial accelerometers. System equations and a configuration which is feasible for the gyro-free IMU design are presented. The propagation of accelerometer measurement errors is analyzed. An unscented Kalman filter (UKF) is proposed for state estimation. Simulation results show that the system state is robustly estimated by the proposed UKF. Furthermore, compared with the results of error analysis, the UKF provides effective error reductions on state estimation. The error of angular velocity estimation over full scale (FS) is about ±0.4%FS.","PeriodicalId":371808,"journal":{"name":"2014 IEEE/ION Position, Location and Navigation Symposium - PLANS 2014","volume":"57 1464 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE/ION Position, Location and Navigation Symposium - PLANS 2014","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLANS.2014.6851380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This study reports a gyro-free inertial measurement unit (IMU) using solely four triaxial accelerometers. System equations and a configuration which is feasible for the gyro-free IMU design are presented. The propagation of accelerometer measurement errors is analyzed. An unscented Kalman filter (UKF) is proposed for state estimation. Simulation results show that the system state is robustly estimated by the proposed UKF. Furthermore, compared with the results of error analysis, the UKF provides effective error reductions on state estimation. The error of angular velocity estimation over full scale (FS) is about ±0.4%FS.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于无陀螺惯性测量单元状态估计的无气味卡尔曼滤波器
本研究报告了一种仅使用四个三轴加速度计的无陀螺惯性测量单元(IMU)。给出了可行的无陀螺IMU设计的系统方程和结构。分析了加速度计测量误差的传播规律。提出了一种无气味卡尔曼滤波器(UKF)用于状态估计。仿真结果表明,所提出的UKF能对系统状态进行鲁棒估计。此外,与误差分析结果相比,UKF在状态估计上提供了有效的误差减小。满量程(FS)上的角速度估计误差约为±0.4%FS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A blueprint for civil GPS navigation message authentication Standalone inertial pocket navigation system Anchor-free localization using round-trip delay measurements for martian swarm exploration A novel local integrity concept for GNSS receivers in urban vehicular contexts The improved spatial nuller with frequency swept jammer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1