Concept of predictive maintenance of production systems in accordance with industry 4.0

L. Spendla, M. Kebísek, P. Tanuška, Lukas Hrcka
{"title":"Concept of predictive maintenance of production systems in accordance with industry 4.0","authors":"L. Spendla, M. Kebísek, P. Tanuška, Lukas Hrcka","doi":"10.1109/SAMI.2017.7880343","DOIUrl":null,"url":null,"abstract":"In the proposed paper, we described the approach to build Hadoop based knowledge discovery platform. The proposal focuses on predictive maintenance of production systems, including manufacturing machines and tools, to increase the production process quality. The proposal utilises production data storage, built on Hadoop framework and NoSQL systems, integrated into traditional data warehouse discovery platform, preserving the well proven and robust data warehouse decision support and analytic tools. The initial proof of concept case study is included in the proposed paper.","PeriodicalId":105599,"journal":{"name":"2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMI.2017.7880343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

Abstract

In the proposed paper, we described the approach to build Hadoop based knowledge discovery platform. The proposal focuses on predictive maintenance of production systems, including manufacturing machines and tools, to increase the production process quality. The proposal utilises production data storage, built on Hadoop framework and NoSQL systems, integrated into traditional data warehouse discovery platform, preserving the well proven and robust data warehouse decision support and analytic tools. The initial proof of concept case study is included in the proposed paper.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
根据工业4.0对生产系统进行预测性维护的概念
在本文中,我们描述了基于Hadoop的知识发现平台的构建方法。该建议侧重于生产系统的预测性维护,包括制造机器和工具,以提高生产过程质量。该提案利用基于Hadoop框架和NoSQL系统的生产数据存储,集成到传统的数据仓库发现平台中,保留了经过验证的强大的数据仓库决策支持和分析工具。最初的概念证明案例研究包括在拟议的文件中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-organising symbolic aggregate approximation for real-time fault detection and diagnosis in transient dynamic systems Robot navigation in unknown environment using fuzzy logic Artificial neural network based IDS Video-based measurement system of parameters of the pyrotechnic effect Building environment analysis based on clustering methods from sensor data on top of the Hadoop platform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1