World cloud cover feature extraction base on wavelet and statistics from ISCCP D2 dataset

Xiupeng Jia, Peng Huang, Wenyi Zhang
{"title":"World cloud cover feature extraction base on wavelet and statistics from ISCCP D2 dataset","authors":"Xiupeng Jia, Peng Huang, Wenyi Zhang","doi":"10.1109/FSKD.2012.6233758","DOIUrl":null,"url":null,"abstract":"In order to extract cloud cover feature from ISCCP D2 dataset, a method of feature extraction using wavelet and statistics was used. This method concerned the characteristic of the cloud cover and the applications requirement, and combined the autocorrelation function, partial autocorrelation function with the wavelet method. We can get the conclusion from the features: (1) the features from wavelet analysis are more evident than the features from original series; (2) most of the cloud amount series in ISCCP D2 dataset are stationary series, and the autocorrelation functions (AF) and partial autocorrelation functions (PAF) shows there are diurnal cycle in these series. As a result, it is possible to establish ARIMA model to estimate the cloud amount for a small region in the world.","PeriodicalId":337941,"journal":{"name":"International Conference on Fuzzy Systems and Knowledge Discovery","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Fuzzy Systems and Knowledge Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FSKD.2012.6233758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In order to extract cloud cover feature from ISCCP D2 dataset, a method of feature extraction using wavelet and statistics was used. This method concerned the characteristic of the cloud cover and the applications requirement, and combined the autocorrelation function, partial autocorrelation function with the wavelet method. We can get the conclusion from the features: (1) the features from wavelet analysis are more evident than the features from original series; (2) most of the cloud amount series in ISCCP D2 dataset are stationary series, and the autocorrelation functions (AF) and partial autocorrelation functions (PAF) shows there are diurnal cycle in these series. As a result, it is possible to establish ARIMA model to estimate the cloud amount for a small region in the world.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于小波和ISCCP D2数据统计的世界云量特征提取
为了从ISCCP D2数据集中提取云覆盖特征,采用小波与统计相结合的特征提取方法。该方法考虑了云量的特点和应用需求,将自相关函数、偏自相关函数与小波变换相结合。从特征可以得出结论:(1)小波分析的特征比原始序列的特征更明显;(2) ISCCP D2数据集的云量序列大部分为平稳序列,自相关函数(AF)和部分自相关函数(PAF)显示这些序列存在日循环。因此,建立ARIMA模式估算全球小区域的云量是可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An in-pipe internal defects inspection system based on the active stereo omnidirectional vision sensor Node Localization based on Convex Optimization in Wireless Sensor Networks Invertible singleton fuzzy models: application to petroleum production control systems An algorithm for extension of clausal beliefs Computer system model in college examination
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1