Breast Cancer Digital Patient Model to Capture and Visualize Real World Data

N. Larburu, Mónica Arrúe, I. Macía, Jon Kerexeta, Naiara Muro
{"title":"Breast Cancer Digital Patient Model to Capture and Visualize Real World Data","authors":"N. Larburu, Mónica Arrúe, I. Macía, Jon Kerexeta, Naiara Muro","doi":"10.1109/CBMS.2019.00132","DOIUrl":null,"url":null,"abstract":"Digital revolution in health enables clinicians to access huge amount of data that can be exploited for decision making. However, the lack of integration of the various data sources, the existence of data sources not directly exploitable (e.g. free text, image, signals, genomic sequences) and the lack of digital data models (i.e. digital representation of the data) make such exploitation difficult. The development of effective Decision Support Systems (DSS) in concrete clinical contexts involves the development of appropriate and integrated representations of them, together with new paradigms for the exploitation, modeling and visualization of data oriented to decision-making. The European project DESIREE aims to contribute to the development of a system with these characteristics that has application to decision making by the Breast Committee. In particular, the visual analytics tool can contribute to the exploitation of clinical data in Breast Cancer.","PeriodicalId":311634,"journal":{"name":"2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)","volume":"37 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2019.00132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Digital revolution in health enables clinicians to access huge amount of data that can be exploited for decision making. However, the lack of integration of the various data sources, the existence of data sources not directly exploitable (e.g. free text, image, signals, genomic sequences) and the lack of digital data models (i.e. digital representation of the data) make such exploitation difficult. The development of effective Decision Support Systems (DSS) in concrete clinical contexts involves the development of appropriate and integrated representations of them, together with new paradigms for the exploitation, modeling and visualization of data oriented to decision-making. The European project DESIREE aims to contribute to the development of a system with these characteristics that has application to decision making by the Breast Committee. In particular, the visual analytics tool can contribute to the exploitation of clinical data in Breast Cancer.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
乳腺癌数字患者模型捕捉和可视化真实世界的数据
卫生领域的数字革命使临床医生能够访问可用于决策的大量数据。然而,由于缺乏对各种数据源的整合,存在不能直接利用的数据源(例如自由文本、图像、信号、基因组序列)和缺乏数字数据模型(即数据的数字表示),使得这种利用变得困难。在具体的临床环境中,有效的决策支持系统(DSS)的发展涉及到适当的和集成的表示的发展,以及面向决策的数据的开发、建模和可视化的新范式。欧洲项目DESIREE旨在促进发展一个具有这些特点的系统,使其适用于乳房委员会的决策。特别是,可视化分析工具可以促进乳腺癌临床数据的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysing the Performance of a Real-Time Healthcare 4.0 System using Shared Frailty Time to Event Models Performance of Data Enhancements and Training Optimization for Neural Network: A Polyp Detection Case Study I Know How you Feel Now, and Here's why!: Demystifying Time-Continuous High Resolution Text-Based Affect Predictions in the Wild Identifying Diabetic Retinopathy from OCT Images using Deep Transfer Learning with Artificial Neural Networks Towards an Analysis of Post-Transcriptional Gene Regulation in Psoriasis via microRNAs using Machine Learning Algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1