{"title":"An ensemble method","authors":"Jun Liang","doi":"10.1145/3290420.3290454","DOIUrl":null,"url":null,"abstract":"This paper gives an ensemble method called EKNN-RF. Its base classifiers use an enhanced KNN algorithm where an optimal nearest neighbor number and a distance function on a validation set are obtained to make these parameters better reflect the distribution of real data. The feature set of each base classifier is obtained through bootstrap sampling from original feature set, and make the features with higher importance have a better weight. Then the training set of each base classifier is also obtained by bootstrap sampling based original training set and the newly generated feature set. Finally, each base classifier votes to determine the classification result. Experimental results show that compared with Adaboost, Naive Bayes, RandomForest, DCT-KNN [1], LMKNN+DWKNN [2], W-KNN [3], dwh-KNN [4] and LI-KNN [5], the ensemble method EKNN-RF has certain advantages and higher classification accuracy on some datasets.","PeriodicalId":259201,"journal":{"name":"International Conference on Critical Infrastructure Protection","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Critical Infrastructure Protection","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3290420.3290454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

This paper gives an ensemble method called EKNN-RF. Its base classifiers use an enhanced KNN algorithm where an optimal nearest neighbor number and a distance function on a validation set are obtained to make these parameters better reflect the distribution of real data. The feature set of each base classifier is obtained through bootstrap sampling from original feature set, and make the features with higher importance have a better weight. Then the training set of each base classifier is also obtained by bootstrap sampling based original training set and the newly generated feature set. Finally, each base classifier votes to determine the classification result. Experimental results show that compared with Adaboost, Naive Bayes, RandomForest, DCT-KNN [1], LMKNN+DWKNN [2], W-KNN [3], dwh-KNN [4] and LI-KNN [5], the ensemble method EKNN-RF has certain advantages and higher classification accuracy on some datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
集成方法
本文给出了一种称为EKNN-RF的集成方法。它的基本分类器使用了一种增强的KNN算法,该算法获得了验证集上的最优近邻数和距离函数,使这些参数更好地反映了真实数据的分布。每个基分类器的特征集通过对原始特征集的自举采样得到,并使重要度较高的特征具有较好的权重。然后通过基于自举抽样的原始训练集和新生成的特征集得到每个基分类器的训练集。最后,每个基分类器投票决定分类结果。实验结果表明,与Adaboost、朴素贝叶斯、随机森林、DCT-KNN[1]、LMKNN+DWKNN[2]、W-KNN[3]、dwh-KNN[4]和LI-KNN[5]相比,集成方法EKNN-RF在某些数据集上具有一定的优势和更高的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep learning chips: challenges and opportunities for ubiquitous power internet of things Secrecy relaying strategy over correlated fading channels using CSI estimation 3D anisotropie convolutional neural network with step transfer learning for liver segmentation Image feature fusion and its application based on trace transform and improved GLBP An improved AOR-based precoding for massive MIMO systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1