E-rank: A Structural-Based Similarity Measure in Social Networks

Mingxi Zhang, Zhenying He, Hao Hu, Wei Wang
{"title":"E-rank: A Structural-Based Similarity Measure in Social Networks","authors":"Mingxi Zhang, Zhenying He, Hao Hu, Wei Wang","doi":"10.1109/WI-IAT.2012.111","DOIUrl":null,"url":null,"abstract":"With the social networks (SNs) becoming ubiquitous and massive, the issue of similarity computation among entities becomes more challenging and draws extensive interests from various research fields. SimRank is a well known similarity measure, however it considers only the meetings between two nodes that walk along equal length paths since the path length increases strictly with the iteration increasing during the similarity computation, besides, it does not differentiate importance for each link. In this paper, we propose a novel structural similarity measure, E-Rank (Entity Rank), towards effectively computing the structural similarity of entities in SNs, based on the intuition that two entities are similar if they can arrive at common entities. E-Rank can be well applied to social networks for measuring similarities of entities. Extensive experiments demonstrate the effectiveness of E-Rank by comparing with the state-of-the-art measures.","PeriodicalId":220218,"journal":{"name":"2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT.2012.111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

With the social networks (SNs) becoming ubiquitous and massive, the issue of similarity computation among entities becomes more challenging and draws extensive interests from various research fields. SimRank is a well known similarity measure, however it considers only the meetings between two nodes that walk along equal length paths since the path length increases strictly with the iteration increasing during the similarity computation, besides, it does not differentiate importance for each link. In this paper, we propose a novel structural similarity measure, E-Rank (Entity Rank), towards effectively computing the structural similarity of entities in SNs, based on the intuition that two entities are similar if they can arrive at common entities. E-Rank can be well applied to social networks for measuring similarities of entities. Extensive experiments demonstrate the effectiveness of E-Rank by comparing with the state-of-the-art measures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
E-rank:社会网络中基于结构的相似性度量
随着社交网络的普及和规模化,实体间的相似度计算问题变得越来越具有挑战性,引起了各个研究领域的广泛关注。simmrank是一种著名的相似度度量方法,但它只考虑沿等长路径行走的两个节点之间的相遇,因为在相似度计算过程中,路径长度随着迭代次数的增加而严格增加,而且它没有区分每个链路的重要性。在本文中,我们提出了一种新的结构相似性度量E-Rank(实体秩),用于有效地计算SNs中实体的结构相似性,基于直觉,如果两个实体能够到达共同实体,则它们是相似的。E-Rank可以很好地应用于社交网络来衡量实体的相似性。大量的实验证明了E-Rank与最先进的测量方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Conceptualization Effects on MEDLINE Documents Classification Using Rocchio Method Keyword Proximity Search over Large and Complex RDF Database Cognitive-Educational Constraints for Socially-Relevant MALL Technologies Mining Criminal Networks from Chat Log Inferring User Context from Spatio-Temporal Pattern Mining for Mobile Application Services
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1