A functional manipulation for improving tolerance against multiple-valued weight faults of feedforward neural networks

N. Kamiura, Yasuyuki Taniguchi, N. Matsui
{"title":"A functional manipulation for improving tolerance against multiple-valued weight faults of feedforward neural networks","authors":"N. Kamiura, Yasuyuki Taniguchi, N. Matsui","doi":"10.1109/ISMVL.2001.924593","DOIUrl":null,"url":null,"abstract":"In this paper we propose feedforward neural networks (NNs for short) tolerating multiple-valued stuck-at faults of connection weights. To improve the fault tolerance against faults with small false absolute values, we employ the activation function with the relatively gentle gradient for the last layer, and steepen the gradient of the function in the intermediate layer. For faults with large false absolute values, the function working as filter inhibits their influence by setting products of inputs and faulty weights to allowable values. The experimental results show that our NN is superior in fault tolerance and learning time to other NNs employing approaches based on fault injection, forcible weight limit and so forth.","PeriodicalId":297353,"journal":{"name":"Proceedings 31st IEEE International Symposium on Multiple-Valued Logic","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 31st IEEE International Symposium on Multiple-Valued Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2001.924593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we propose feedforward neural networks (NNs for short) tolerating multiple-valued stuck-at faults of connection weights. To improve the fault tolerance against faults with small false absolute values, we employ the activation function with the relatively gentle gradient for the last layer, and steepen the gradient of the function in the intermediate layer. For faults with large false absolute values, the function working as filter inhibits their influence by setting products of inputs and faulty weights to allowable values. The experimental results show that our NN is superior in fault tolerance and learning time to other NNs employing approaches based on fault injection, forcible weight limit and so forth.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种提高前馈神经网络对多值权错误容忍度的功能操作
本文提出了一种允许连接权值多值卡滞故障的前馈神经网络(简称nn)。为了提高对假绝对值较小的故障的容错性,我们在最后一层采用梯度相对平缓的激活函数,并在中间层使函数梯度变陡。对于假绝对值较大的故障,该函数作为过滤器通过将输入和故障权值的乘积设置为允许值来抑制其影响。实验结果表明,与基于故障注入、强制权值限制等方法的神经网络相比,我们的神经网络在容错性和学习时间上都有明显的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Logic circuit diagnosis by using neural networks A 4 digit CMOS quaternary to analog converter with current switch and neuron MOS down-literal circuit Design of Haar wavelet transforms and Haar spectral transform decision diagrams for multiple-valued functions A method of uncertainty reasoning by using information Evaluation of inconsistency in a 2-way fuzzy adaptive system using shadowed sets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1